Nyitrai Gabriella, Keszthelyi Tamás, Bóta Attila, Simon Agnes, Tőke Orsolya, Horváth Gergő, Pál Ildikó, Kardos Julianna, Héja László
Department of Functional Pharmacology, Hungarian Academy of Sciences, Hungary.
Biochim Biophys Acta. 2013 Aug;1828(8):1873-80. doi: 10.1016/j.bbamem.2013.04.004. Epub 2013 Apr 15.
Polyamidoamine (PAMAM) dendrimers are highly charged hyperbranched protein-like polymers that are known to interact with cell membranes. In order to disclose the mechanisms of dendrimer-membrane interaction, we monitored the effect of PAMAM generation five (G5) dendrimer on the membrane permeability of living neuronal cells followed by exploring the underlying structural changes with infrared-visible sum frequency vibrational spectroscopy (SVFS), small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). G5 dendrimers were demonstrated to irreversibly increase the membrane permeability of neurons that could be blocked in low-[Na(+)], but not in low-[Ca(2+)] media suggesting the formation of specific Na(+) permeable channels. SFVS measurements on silica supported DPPG-DPPC bilayers suggested G5-specific trans-polarization of the membrane. SAXS data and freeze-fracture TEM imaging of self-organized DPPC vesicle systems demonstrated disruption of DPPC vesicle layers by G5 through polar interactions between G5 terminal amino groups and the anionic head groups of DPPC. We propose a nanoscale mechanism by which G5 incorporates into the membrane through multiple polar interactions that disrupt proximate membrane bilayer and shape a unique hydrophilic Na(+) ion permeable channel around the dendrimer. In addition, we tested whether these artificial Na(+) channels can be exploited as antibiotic tools. We showed that G5 quickly arrest the growth of resistant bacterial strains below 10μg/ml concentration, while they show no detrimental effect on red blood cell viability, offering the chance for the development of new generation anti-resistant antibiotics.
聚酰胺 - 胺(PAMAM)树枝状大分子是高度带电的超支化蛋白质样聚合物,已知其可与细胞膜相互作用。为了揭示树枝状大分子与膜相互作用的机制,我们监测了第五代(G5)PAMAM树枝状大分子对活神经元细胞膜通透性的影响,随后用红外 - 可见和频振动光谱(SVFS)、小角X射线散射(SAXS)和透射电子显微镜(TEM)探索其潜在的结构变化。结果表明,G5树枝状大分子可不可逆地增加神经元的膜通透性,这种通透性增加在低[Na⁺]介质中可被阻断,但在低[Ca²⁺]介质中则不能,这表明形成了特定的Na⁺渗透通道。对二氧化硅负载的二棕榈酰磷脂酰甘油 - 二棕榈酰磷脂酰胆碱(DPPG - DPPC)双层膜进行的SFVS测量表明,G5可使膜发生特异性的跨极化。SAXS数据以及自组装DPPC囊泡系统的冷冻断裂TEM成像表明,G5通过其末端氨基与DPPC阴离子头部基团之间的极性相互作用破坏了DPPC囊泡层。我们提出了一种纳米级机制,即G5通过多种极性相互作用融入膜中,这些相互作用破坏了附近的膜双层,并在树枝状大分子周围形成了独特的亲水性Na⁺离子渗透通道。此外,我们测试了这些人工Na⁺通道是否可作为抗生素工具。结果表明,G5在浓度低于10μg/ml时能迅速抑制耐药细菌菌株的生长,而对红细胞活力无有害影响,这为新一代抗耐药抗生素的开发提供了机会。