Suppr超能文献

乙酰苯胺晶体中带电状态的能量:电荷转移态在空位处的俘获作为光学损伤的一种可能机制。

Energy of charged states in the acetanilide crystal: trapping of charge-transfer states at vacancies as a possible mechanism for optical damage.

作者信息

Tsiaousis D, Munn R W

机构信息

Department of Chemistry, UMIST, Manchester M60 1QD, United Kingdom.

出版信息

J Chem Phys. 2004 Apr 15;120(15):7095-106. doi: 10.1063/1.1669376.

Abstract

Calculations for the acetanilide crystal yield the effective polarizability (16.6 A(3)), local electric field tensor, effective dipole moment (5.41 D), and dipole-dipole energy (-12.8 kJ/mol). Fourier-transform techniques are used to calculate the polarization energy P for a single charge in the perfect crystal (-1.16 eV); the charge-dipole energy W(D) is zero if the crystal carries no bulk dipole moment. Polarization energies for charge-transfer (CT) pairs combine with the Coulomb energy E(C) to give the screened Coulomb energy E(scr); screening is nearly isotropic, with E(scr) approximately E(C)/2.7. For CT pairs W(D) reduces to a term deltaW(D) arising from the interaction of the charge on each ion with the change in dipole moment on the other ion relative to the neutral molecule. The dipole moments calculated by density-functional theory methods with the B3LYP functional at the 6-311++G(**) level are 3.62 D for the neutral molecule, changing to 7.13 D and 4.38 D for the anion and cation, relative to the center of mass. Because of the large change in the anion, deltaW(D) reaches -0.9 eV and modifies the sequence of CT energies markedly from that of E(scr), giving the lowest two CT pairs at -1.98 eV and -1.41 eV. The changes in P and W(D) near a vacancy are calculated; W(D) changes for the individual charges because the vacancy removes a dipole moment and modifies the crystal dielectric response, but deltaW(D) and E(C) do not change. A vacancy yields a positive change DeltaP that scatters a charge or CT pair, but the change DeltaW(D) can be negative and large enough to outweigh DeltaP, yielding traps with depths that can exceed 150 meV for single charges and for CT pairs. Divacancies yield traps with depths nearly equal to the sum of those produced by the separate vacancies and so they can exceed 300 meV. These results are consistent with a mechanism of optical damage in which vacancies trap optically generated CT pairs that recombine and release energy; this can disrupt the lattice around the vacancy, thereby favoring trapping and recombination of CT pairs generated by subsequent photon absorption, leading to further lattice disruption. Revisions to previous calculations on trapping of CT pairs in anthracene are reported.

摘要

对乙酰苯胺晶体的计算得出有效极化率(16.6 ų)、局部电场张量、有效偶极矩(5.41 D)和偶极 - 偶极能量(-12.8 kJ/mol)。采用傅里叶变换技术计算完美晶体中单个电荷的极化能P(-1.16 eV);如果晶体没有体偶极矩,则电荷 - 偶极能量W(D)为零。电荷转移(CT)对的极化能与库仑能E(C)相结合得到屏蔽库仑能E(scr);屏蔽近似各向同性,E(scr)约为E(C)/2.7。对于CT对,W(D)简化为一项δW(D),它源于每个离子上的电荷与另一个离子相对于中性分子的偶极矩变化之间的相互作用。用密度泛函理论方法在6 - 311++G(**)水平上采用B3LYP泛函计算得到的中性分子偶极矩为3.62 D,相对于质心,阴离子和阳离子的偶极矩分别变为7.13 D和4.38 D。由于阴离子的变化很大,δW(D)达到 -0.9 eV,并显著改变了CT能量的顺序,使其与E(scr)的顺序不同,最低的两个CT对分别为 -1.98 eV和 -1.41 eV。计算了空位附近P和W(D)的变化;由于空位消除了偶极矩并改变了晶体的介电响应,单个电荷的W(D)发生变化,但δW(D)和E(C)不变。空位产生正的变化量ΔP,它会散射电荷或CT对,但变化量ΔW(D)可能为负且大到足以超过ΔP,从而产生深度超过150 meV的单电荷和CT对陷阱。双空位产生的陷阱深度几乎等于单独空位产生的陷阱深度之和,因此可能超过300 meV。这些结果与一种光学损伤机制一致,即空位捕获光生CT对,这些CT对复合并释放能量;这会破坏空位周围的晶格,从而有利于捕获和复合后续光子吸收产生的CT对,导致进一步的晶格破坏。报告了对先前关于蒽中CT对捕获计算的修正。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验