Russ Nicholas J, Crawford T Daniel, Tschumper Gregory S
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
J Chem Phys. 2004 Apr 22;120(16):7298-306. doi: 10.1063/1.1687336.
We have examined the relative abilities of Hartree-Fock, density-functional theory (DFT), and coupled-cluster theory in describing second-order (pseudo) Jahn-Teller (SOJT) effects, perhaps the most commonly encountered form of symmetry breaking in polyatomic molecules. As test cases, we have considered two prototypical systems: the 2Sigmau+ states of D( infinity h) BNB and C3+ for which interaction with a low-lying 2Sigmag+ excited state leads to symmetry breaking of the nuclear framework. We find that the Hartree-Fock and B3LYP methods correctly reproduce the pole structure of quadratic force constants expected from exact SOJT theory, but that both methods appear to underestimate the strength of the coupling between the electronic states. Although the Tamm-Dancoff (CIS) approximation gives excitation energies with no relationship to the SOJT interaction, the random-phase-approximation (RPA) approach to Hartree-Fock and time-dependent DFT excitation energies predicts state crossings coinciding nearly perfectly with the positions of the force constant poles. On the other hand, the RPA excited-state energies exhibit unphysical curvature near their crossings with the ground (reference) state, a problem arising directly from the mathematical structure of the RPA equations. Coupled-cluster methods appear to accurately predict the strength of the SOJT interactions between the 2Sigmau+ and 2Sigmag+ states, assuming that the inclusion of full triple excitations provides a suitable approximation to the exact wave function, and are the only methods examined here which predict symmetry breaking in BNB. However, coupled-cluster methods are plagued by artifactual force constant poles arising from the response of the underlying reference molecular orbitals to the geometric perturbation. Furthermore, the structure of the "true" SOJT force constant poles predicted by coupled-cluster methods, although correctly positioned, has the wrong structure.
我们研究了哈特里 - 福克(Hartree - Fock)理论、密度泛函理论(DFT)和耦合簇理论在描述二阶(赝) Jahn - Teller(SOJT)效应方面的相对能力,SOJT效应可能是多原子分子中最常见的对称性破缺形式。作为测试案例,我们考虑了两个典型系统:具有D(∞h)对称性的BNB和C3 +的2Σu +态,其与低能2Σg +激发态的相互作用导致核框架的对称性破缺。我们发现,哈特里 - 福克方法和B3LYP方法正确地再现了精确SOJT理论预期的二次力常数的极点结构,但这两种方法似乎都低估了电子态之间耦合的强度。虽然Tamm - Dancoff(CIS)近似给出的激发能与SOJT相互作用无关,但哈特里 - 福克和含时DFT激发能的随机相位近似(RPA)方法预测的态交叉几乎与力常数极点的位置完美重合。另一方面,RPA激发态能量在与基态(参考态)交叉处附近表现出非物理的曲率,这一问题直接源于RPA方程的数学结构。假设包含完整的三重激发能为精确波函数提供合适的近似,耦合簇方法似乎能准确预测2Σu +和2Σg +态之间SOJT相互作用的强度,并且是这里所研究的唯一预测BNB中对称性破缺的方法。然而,耦合簇方法受到来自基础参考分子轨道对几何微扰响应所产生的人为力常数极点的困扰。此外,耦合簇方法预测的“真实”SOJT力常数极点的结构,尽管位置正确,但结构错误。