Banerjee Dhruba, Bag Bidhan Chandra, Banik Suman Kumar, Ray Deb Shankar
Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India.
J Chem Phys. 2004 May 15;120(19):8960-72. doi: 10.1063/1.1711593.
Based on a coherent state representation of noise operator and an ensemble averaging procedure using Wigner canonical thermal distribution for harmonic oscillators, a generalized quantum Langevin equation has been recently developed [Phys. Rev. E 65, 021109 (2002); 66, 051106 (2002)] to derive the equations of motion for probability distribution functions in c-number phase-space. We extend the treatment to explore several systematic approximation schemes for the solutions of the Langevin equation for nonlinear potentials for a wide range of noise correlation, strength and temperature down to the vacuum limit. The method is exemplified by an analytic application to harmonic oscillator for arbitrary memory kernel and with the help of a numerical calculation of barrier crossing, in a cubic potential to demonstrate the quantum Kramers' turnover and the quantum Arrhenius plot.
基于噪声算符的相干态表示以及使用谐振子的维格纳正则热分布的系综平均程序,最近已推导出一个广义量子朗之万方程[《物理评论E》65, 021109 (2002); 66, 051106 (2002)],用于推导经典数相空间中概率分布函数的运动方程。我们扩展了该处理方法,以探索在广泛的噪声关联、强度和温度直至真空极限下,针对非线性势的朗之万方程解的几种系统近似方案。该方法通过对具有任意记忆核的谐振子进行解析应用,并借助在立方势中势垒穿越的数值计算来举例说明,以展示量子克莱默斯转变和量子阿仑尼乌斯图。