Coffey W T, Kalmykov Yu P, Titov S V, Mulligan B P
Department of Electronic and Electrical Engineering, Trinity College, Dublin 2, Ireland.
Phys Chem Chem Phys. 2007 Jul 14;9(26):3361-82. doi: 10.1039/b614554j. Epub 2007 Mar 27.
Recent progress in our understanding of quantum effects on the Brownian motion in an external potential is reviewed. This problem is ubiquitous in physics and chemistry, particularly in the context of decay of metastable states, for example, the reversal of the magnetization of a single domain ferromagnetic particle, kinetics of a superconducting tunnelling junction, etc. Emphasis is laid on the establishment of master equations describing the diffusion process in phase space analogous to the classical Fokker-Planck equation. In particular, it is shown how Wigner's [E. P. Wigner, Phys. Rev., 1932, 40, 749] method of obtaining quantum corrections to the classical equilibrium Maxwell-Boltzmann distribution may be extended to the dissipative non-equilibrium dynamics governing the quantum Brownian motion in an external potential V(x), yielding a master equation for the Wigner distribution function W(x,p,t) in phase space (x,p). The explicit form of the master equation so obtained contains quantum correction terms up to o(h(4)) and in the classical limit, h --> 0, reduces to the classical Klein-Kramers equation. For a quantum oscillator, the method yields an evolution equation coinciding in all respects with that of Agarwal [G. S. Agarwal, Phys. Rev. A, 1971, 4, 739]. In the high dissipation limit, the master equation reduces to a semi-classical Smoluchowski equation describing non-inertial quantum diffusion in configuration space. The Wigner function formulation of quantum Brownian motion is further illustrated by finding quantum corrections to the Kramers escape rate, which, in appropriate limits, reduce to those yielded via quantum generalizations of reaction rate theory.
综述了我们对外部势场中量子效应作用于布朗运动的理解的最新进展。这个问题在物理和化学中普遍存在,特别是在亚稳态衰变的背景下,例如,单畴铁磁粒子的磁化反转、超导隧道结的动力学等。重点在于建立描述相空间中扩散过程的主方程,类似于经典的福克 - 普朗克方程。特别地,展示了维格纳[E. P. 维格纳,《物理评论》,1932年,第40卷,第749页]获得经典平衡麦克斯韦 - 玻尔兹曼分布量子修正的方法如何扩展到控制外部势场(V(x))中量子布朗运动的耗散非平衡动力学,从而得到相空间((x,p))中维格纳分布函数(W(x,p,t))的主方程。如此得到的主方程的显式形式包含高达(O(\hbar^4))的量子修正项,并且在经典极限(\hbar \to 0)时,简化为经典的克莱因 - 克拉默斯方程。对于量子振荡器,该方法得到的演化方程在各方面都与阿加瓦尔[G. S. 阿加瓦尔,《物理评论A》,1971年,第4卷,第739页]的方程一致。在高耗散极限下,主方程简化为描述构型空间中非惯性量子扩散的半经典斯莫卢霍夫斯基方程。通过找到对克莱默斯逃逸率的量子修正,进一步说明了量子布朗运动的维格纳函数表述,在适当的极限下,这些修正简化为通过反应速率理论的量子推广得到的结果。