Suppr超能文献

踝蛋白杆中纽蛋白结合位点的激活涉及一个五螺旋束的重排。

Activation of a vinculin-binding site in the talin rod involves rearrangement of a five-helix bundle.

作者信息

Papagrigoriou Evangelos, Gingras Alexandre R, Barsukov Igor L, Bate Neil, Fillingham Ian J, Patel Bipin, Frank Ronald, Ziegler Wolfgang H, Roberts Gordon C K, Critchley David R, Emsley Jonas

机构信息

Department of Biochemistry, University of Leicester, Leicester, UK.

出版信息

EMBO J. 2004 Aug 4;23(15):2942-51. doi: 10.1038/sj.emboj.7600285. Epub 2004 Jul 22.

Abstract

The interaction between the cytoskeletal proteins talin and vinculin plays a key role in integrin-mediated cell adhesion and migration. We have determined the crystal structures of two domains from the talin rod spanning residues 482-789. Talin 482-655, which contains a vinculin-binding site (VBS), folds into a five-helix bundle whereas talin 656-789 is a four-helix bundle. We show that the VBS is composed of a hydrophobic surface spanning five turns of helix 4. All the key side chains from the VBS are buried and contribute to the hydrophobic core of the talin 482-655 fold. We demonstrate that the talin 482-655 five-helix bundle represents an inactive conformation, and mutations that disrupt the hydrophobic core or deletion of helix 5 are required to induce an active conformation in which the VBS is exposed. We also report the crystal structure of the N-terminal vinculin head domain in complex with an activated form of talin. Activation of the VBS in talin and the recruitment of vinculin may support the maturation of small integrin/talin complexes into more stable adhesions.

摘要

细胞骨架蛋白踝蛋白(talin)和纽蛋白(vinculin)之间的相互作用在整联蛋白介导的细胞黏附与迁移中起关键作用。我们已确定了踝蛋白杆状结构域中跨越482 - 789位残基的两个结构域的晶体结构。包含纽蛋白结合位点(VBS)的踝蛋白482 - 655折叠成一个五螺旋束,而踝蛋白656 - 789是一个四螺旋束。我们发现VBS由跨越螺旋4五圈的疏水表面组成。VBS的所有关键侧链都被掩埋,并构成了踝蛋白482 - 655折叠结构的疏水核心。我们证明踝蛋白482 - 655五螺旋束代表一种无活性构象,需要破坏疏水核心的突变或删除螺旋5才能诱导出VBS暴露的活性构象。我们还报道了与活化形式的踝蛋白形成复合物的纽蛋白头部结构域N端的晶体结构。踝蛋白中VBS的活化以及纽蛋白的募集可能有助于小的整联蛋白/踝蛋白复合物成熟为更稳定的黏附结构。

相似文献

1
Activation of a vinculin-binding site in the talin rod involves rearrangement of a five-helix bundle.
EMBO J. 2004 Aug 4;23(15):2942-51. doi: 10.1038/sj.emboj.7600285. Epub 2004 Jul 22.
2
A vinculin binding domain from the talin rod unfolds to form a complex with the vinculin head.
Structure. 2005 Jan;13(1):65-74. doi: 10.1016/j.str.2004.11.006.
4
Mapping and consensus sequence identification for multiple vinculin binding sites within the talin rod.
J Biol Chem. 2005 Nov 4;280(44):37217-24. doi: 10.1074/jbc.M508060200. Epub 2005 Aug 30.
5
Integrin connections to the cytoskeleton through talin and vinculin.
Biochem Soc Trans. 2008 Apr;36(Pt 2):235-9. doi: 10.1042/BST0360235.
6
Structural and dynamic characterization of a vinculin binding site in the talin rod.
Biochemistry. 2006 Feb 14;45(6):1805-17. doi: 10.1021/bi052136l.
9
Central region of talin has a unique fold that binds vinculin and actin.
J Biol Chem. 2010 Sep 17;285(38):29577-87. doi: 10.1074/jbc.M109.095455. Epub 2010 Jul 7.
10

引用本文的文献

1
Talin1 dysfunction is genetically linked to systemic capillary leak syndrome.
JCI Insight. 2024 Dec 20;9(24):e173664. doi: 10.1172/jci.insight.173664.
2
DNA nanodevice for analysis of force-activated protein extension and interactions.
bioRxiv. 2024 Dec 11:2024.10.25.620262. doi: 10.1101/2024.10.25.620262.
3
From stress fiber to focal adhesion: a role of actin crosslinkers in force transmission.
Front Cell Dev Biol. 2024 Aug 13;12:1444827. doi: 10.3389/fcell.2024.1444827. eCollection 2024.
4
Cellular stiffness sensing through talin 1 in tissue mechanical homeostasis.
Sci Adv. 2024 Aug 23;10(34):eadi6286. doi: 10.1126/sciadv.adi6286. Epub 2024 Aug 21.
6
The focal adhesion protein talin is a mechanically gated A-kinase anchoring protein.
Proc Natl Acad Sci U S A. 2024 Mar 26;121(13):e2314947121. doi: 10.1073/pnas.2314947121. Epub 2024 Mar 21.
7
Allosteric activation of vinculin by talin.
Nat Commun. 2023 Jul 18;14(1):4311. doi: 10.1038/s41467-023-39646-4.
8
TLN1 contains a cancer-associated cassette exon that alters talin-1 mechanosensitivity.
J Cell Biol. 2023 May 1;222(5). doi: 10.1083/jcb.202209010. Epub 2023 Mar 6.
9
The mechanical cell - the role of force dependencies in synchronising protein interaction networks.
J Cell Sci. 2022 Nov 15;135(22). doi: 10.1242/jcs.259769. Epub 2022 Nov 18.
10
Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction.
Front Cell Dev Biol. 2022 Feb 9;10:789841. doi: 10.3389/fcell.2022.789841. eCollection 2022.

本文引用的文献

1
Crosstalk between cell adhesion molecules: vinculin as a paradigm for regulation by conformation.
Trends Cell Biol. 1996 Aug;6(8):311-5. doi: 10.1016/0962-8924(96)10022-2.
2
Structural basis for amplifying vinculin activation by talin.
J Biol Chem. 2004 Jun 25;279(26):27667-78. doi: 10.1074/jbc.M403076200. Epub 2004 Apr 7.
4
Integrin activation.
J Cell Sci. 2004 Feb 15;117(Pt 5):657-66. doi: 10.1242/jcs.01014.
5
Vinculin activation by talin through helical bundle conversion.
Nature. 2004 Jan 8;427(6970):171-5. doi: 10.1038/nature02281. Epub 2003 Dec 31.
7
Adhesion-dependent cell mechanosensitivity.
Annu Rev Cell Dev Biol. 2003;19:677-95. doi: 10.1146/annurev.cellbio.19.111301.153011.
8
Talin binding to integrin beta tails: a final common step in integrin activation.
Science. 2003 Oct 3;302(5642):103-6. doi: 10.1126/science.1086652.
9
Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins.
Science. 2003 Sep 19;301(5640):1720-5. doi: 10.1126/science.1084174.
10
Talin loss-of-function uncovers roles in cell contractility and migration in C. elegans.
J Cell Sci. 2003 Oct 1;116(Pt 19):3871-8. doi: 10.1242/jcs.00705. Epub 2003 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验