Suppr超能文献

正链RNA病毒基因组中基因组规模有序RNA结构(GORS)的检测:对病毒进化和宿主持续性的影响。

Detection of genome-scale ordered RNA structure (GORS) in genomes of positive-stranded RNA viruses: Implications for virus evolution and host persistence.

作者信息

Simmonds Peter, Tuplin Andrew, Evans David J

机构信息

Centre for Infectious Diseases, University of Edinburgh, Summerhall, EH9 1QH.

出版信息

RNA. 2004 Sep;10(9):1337-51. doi: 10.1261/rna.7640104. Epub 2004 Jul 23.

Abstract

Discrete RNA secondary and higher-order structures, typically local in extent, play a fundamental role in RNA virus replication. Using new bioinformatics analysis methods, we have identified genome-scale ordered RNA structure (GORS) in many genera and families of positive-strand animal and plant RNA viruses. There was remarkably variability between genera that possess this characteristic; for example, hepaciviruses in the family Flaviviridae show evidence for extensive internal base-pairing throughout their coding sequences that was absent in both the related pestivirus and flavivirus genera. Similar genus-associated variability was observed in the Picornaviridae, the Caliciviridae, and many plant virus families. The similarity in replication strategies between genera in each of these families rules out a role for GORS in a fundamentally conserved aspect of this aspect of the virus life cycle. However, in the Picornaviridae, Flaviviridae, and Caliciviridae, the existence of GORS correlated strongly with the ability of each genus to persist in their natural hosts. This raises the intriguing possibility of a role for GORS in the modulation of innate intracellular defense mechanisms (and secondarily, the acquired immune system) triggered by double-stranded RNA, analogous in function to the expression of structured RNA transcripts by large DNA viruses. Irrespective of function, the observed evolutionary conservation of GORS in many viruses imposes a considerable constraint on genome plasticity and the consequent narrowing of sequence space in which neutral drift can occur. These findings potentially reconcile the rapid evolution of RNA viruses over short periods with the documented examples of extreme conservatism evident from their intimate coevolution with their hosts.

摘要

离散的RNA二级及更高级结构,通常在范围上是局部的,在RNA病毒复制中起基本作用。使用新的生物信息学分析方法,我们在许多正链动植物RNA病毒的属和科中鉴定出了基因组规模的有序RNA结构(GORS)。具有这种特征的属之间存在显著差异;例如,黄病毒科中的肝炎病毒在其整个编码序列中显示出广泛的内部碱基配对证据,而相关的瘟病毒属和黄病毒属中均不存在这种情况。在小RNA病毒科、杯状病毒科和许多植物病毒科中也观察到了类似的属相关差异。这些科中每个属的复制策略的相似性排除了GORS在病毒生命周期这一方面基本保守的方面中起作用的可能性。然而,在小RNA病毒科、黄病毒科和杯状病毒科中,GORS的存在与每个属在其自然宿主中持续存在的能力密切相关。这就提出了一种有趣的可能性,即GORS在调节由双链RNA触发的先天性细胞内防御机制(其次是获得性免疫系统)中起作用,其功能类似于大型DNA病毒表达结构化RNA转录本。无论功能如何,在许多病毒中观察到的GORS的进化保守性对基因组可塑性以及随之而来的中性漂移可能发生的序列空间变窄施加了相当大的限制。这些发现可能调和了RNA病毒在短时间内的快速进化与从它们与宿主的密切共同进化中明显看出的极端保守性的记录实例。

相似文献

2
Bioinformatic and physical characterizations of genome-scale ordered RNA structure in mammalian RNA viruses.
J Virol. 2008 Dec;82(23):11824-36. doi: 10.1128/JVI.01078-08. Epub 2008 Sep 17.
3
Pervasive RNA Secondary Structure in the Genomes of SARS-CoV-2 and Other Coronaviruses.
mBio. 2020 Oct 30;11(6):e01661-20. doi: 10.1128/mBio.01661-20.
6
A New Subclass of Exoribonuclease-Resistant RNA Found in Multiple Genera of .
mBio. 2020 Sep 29;11(5):e02352-20. doi: 10.1128/mBio.02352-20.
8
High variety of known and new RNA and DNA viruses of diverse origins in untreated sewage.
J Virol. 2012 Nov;86(22):12161-75. doi: 10.1128/JVI.00869-12. Epub 2012 Aug 29.
9
Physical and Functional Analysis of Viral RNA Genomes by SHAPE.
Annu Rev Virol. 2019 Sep 29;6(1):93-117. doi: 10.1146/annurev-virology-092917-043315. Epub 2019 Jul 23.

引用本文的文献

1
Genome of a novel Fangshan bunya-like virus identified in mosquitoes from Shandong Province, China.
Sci Rep. 2025 Aug 26;15(1):31356. doi: 10.1038/s41598-025-16304-x.
3
Measuring the selective packaging of RNA molecules by viral coat proteins in cells.
Proc Natl Acad Sci U S A. 2025 Aug 19;122(33):e2505190122. doi: 10.1073/pnas.2505190122. Epub 2025 Aug 11.
4
Transformer model generated bacteriophage genomes are compositionally distinct from natural sequences.
NAR Genom Bioinform. 2024 Sep 18;6(3):lqae129. doi: 10.1093/nargab/lqae129. eCollection 2024 Sep.
5
Context-dependent structure formation of hairpin motifs in bacteriophage MS2 genomic RNA.
Biophys J. 2024 Oct 1;123(19):3397-3407. doi: 10.1016/j.bpj.2024.08.004. Epub 2024 Aug 8.
6
Shows Unique Patterns of Codon Usage Bias in Conventional Versus Unconventional Clade.
Front Cell Infect Microbiol. 2022 Jul 14;12:941325. doi: 10.3389/fcimb.2022.941325. eCollection 2022.
8
The and Architecture of the Hepatitis C Virus RNA Genome Uncovers Functional RNA Secondary and Tertiary Structures.
J Virol. 2022 Apr 27;96(8):e0194621. doi: 10.1128/jvi.01946-21. Epub 2022 Mar 30.

本文引用的文献

1
-acting genomic elements and -acting proteins involved in the assembly of RNA viruses.
Semin Virol. 1994 Feb;5(1):39-49. doi: 10.1006/smvy.1994.1005. Epub 2002 May 25.
3
Mfold web server for nucleic acid folding and hybridization prediction.
Nucleic Acids Res. 2003 Jul 1;31(13):3406-15. doi: 10.1093/nar/gkg595.
4
The dsRNA binding protein family: critical roles, diverse cellular functions.
FASEB J. 2003 Jun;17(9):961-83. doi: 10.1096/fj.02-0958rev.
5
Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease.
Science. 2003 May 16;300(5622):1145-8. doi: 10.1126/science.1082604. Epub 2003 Apr 17.
6
Single-stranded antisense siRNAs guide target RNA cleavage in RNAi.
Cell. 2002 Sep 6;110(5):563-74. doi: 10.1016/s0092-8674(02)00908-x.
7
Viruses and interferon: a fight for supremacy.
Nat Rev Immunol. 2002 Sep;2(9):675-87. doi: 10.1038/nri888.
9
Multiple secondary structure rearrangements during HIV-1 RNA dimerization.
Biochemistry. 2002 Aug 20;41(33):10439-45. doi: 10.1021/bi025993n.
10
Virulence and pathogenesis.
Trends Microbiol. 2002 Jul;10(7):314-7. doi: 10.1016/s0966-842x(02)02391-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验