Suppr超能文献

神经元活动的广义积分发放模型能将一个详细模型的脉冲序列以高度的准确性进行近似。

Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy.

作者信息

Jolivet Renaud, Lewis Timothy J, Gerstner Wulfram

机构信息

Laboratory of Computational Neuroscience, Swiss Federal Institute of Technology, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.

出版信息

J Neurophysiol. 2004 Aug;92(2):959-76. doi: 10.1152/jn.00190.2004.

Abstract

We demonstrate that single-variable integrate-and-fire models can quantitatively capture the dynamics of a physiologically detailed model for fast-spiking cortical neurons. Through a systematic set of approximations, we reduce the conductance-based model to 2 variants of integrate-and-fire models. In the first variant (nonlinear integrate-and-fire model), parameters depend on the instantaneous membrane potential, whereas in the second variant, they depend on the time elapsed since the last spike [Spike Response Model (SRM)]. The direct reduction links features of the simple models to biophysical features of the full conductance-based model. To quantitatively test the predictive power of the SRM and of the nonlinear integrate-and-fire model, we compare spike trains in the simple models to those in the full conductance-based model when the models are subjected to identical randomly fluctuating input. For random current input, the simple models reproduce 70-80 percent of the spikes in the full model (with temporal precision of +/-2 ms) over a wide range of firing frequencies. For random conductance injection, up to 73 percent of spikes are coincident. We also present a technique for numerically optimizing parameters in the SRM and the nonlinear integrate-and-fire model based on spike trains in the full conductance-based model. This technique can be used to tune simple models to reproduce spike trains of real neurons.

摘要

我们证明单变量积分发放模型能够定量捕捉快速发放皮层神经元生理细节模型的动力学特性。通过一系列系统的近似方法,我们将基于电导的模型简化为两种积分发放模型变体。在第一种变体(非线性积分发放模型)中,参数取决于瞬时膜电位,而在第二种变体中,参数取决于自上次发放以来所经过的时间[发放响应模型(SRM)]。这种直接简化将简单模型的特征与完整基于电导模型的生物物理特征联系起来。为了定量测试SRM和非线性积分发放模型的预测能力,当这些模型受到相同的随机波动输入时,我们将简单模型中的发放序列与完整基于电导模型中的发放序列进行比较。对于随机电流输入,在很宽的发放频率范围内,简单模型能重现完整模型中70% - 80%的发放(时间精度为±2毫秒)。对于随机电导注入,高达73%的发放是一致的。我们还提出了一种基于完整基于电导模型中的发放序列对SRM和非线性积分发放模型中的参数进行数值优化的技术。该技术可用于调整简单模型以重现真实神经元的发放序列。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验