Suppr超能文献

调谐的调整:适应如何影响单细胞信息传递。

The tuning of tuning: How adaptation influences single cell information transfer.

机构信息

Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen - the Netherlands.

Maastricht Centre for Systems Biology (MaCSBio), University of Maastricht, Maastricht, The Netherlands.

出版信息

PLoS Comput Biol. 2024 May 13;20(5):e1012043. doi: 10.1371/journal.pcbi.1012043. eCollection 2024 May.

Abstract

Sensory neurons reconstruct the world from action potentials (spikes) impinging on them. To effectively transfer information about the stimulus to the next processing level, a neuron needs to be able to adapt its working range to the properties of the stimulus. Here, we focus on the intrinsic neural properties that influence information transfer in cortical neurons and how tightly their properties need to be tuned to the stimulus statistics for them to be effective. We start by measuring the intrinsic information encoding properties of putative excitatory and inhibitory neurons in L2/3 of the mouse barrel cortex. Excitatory neurons show high thresholds and strong adaptation, making them fire sparsely and resulting in a strong compression of information, whereas inhibitory neurons that favour fast spiking transfer more information. Next, we turn to computational modelling and ask how two properties influence information transfer: 1) spike-frequency adaptation and 2) the shape of the IV-curve. We find that a subthreshold (but not threshold) adaptation, the 'h-current', and a properly tuned leak conductance can increase the information transfer of a neuron, whereas threshold adaptation can increase its working range. Finally, we verify the effect of the IV-curve slope in our experimental recordings and show that excitatory neurons form a more heterogeneous population than inhibitory neurons. These relationships between intrinsic neural features and neural coding that had not been quantified before will aid computational, theoretical and systems neuroscientists in understanding how neuronal populations can alter their coding properties, such as through the impact of neuromodulators. Why the variability of intrinsic properties of excitatory neurons is larger than that of inhibitory ones is an exciting question, for which future research is needed.

摘要

感觉神经元根据作用于其上的动作电位(尖峰)来重建世界。为了有效地将刺激信息传递到下一个处理水平,神经元需要能够将其工作范围调整到刺激的特性。在这里,我们专注于影响皮质神经元信息传递的内在神经特性,以及它们的特性需要与刺激统计数据紧密匹配才能有效地调整。我们首先测量了小鼠桶状皮层 L2/3 中假定兴奋性和抑制性神经元的内在信息编码特性。兴奋性神经元表现出较高的阈值和强烈的适应,使它们稀疏地发射,从而对信息进行强烈压缩,而有利于快速尖峰传递的抑制性神经元则传递更多的信息。接下来,我们转向计算建模,并询问两个特性如何影响信息传递:1)尖峰频率适应和 2)IV 曲线的形状。我们发现,亚阈值(但不是阈值)适应、“h 电流”和适当调节的漏导可以增加神经元的信息传递,而阈值适应可以增加其工作范围。最后,我们在实验记录中验证了 IV 曲线斜率的影响,并表明兴奋性神经元比抑制性神经元形成了一个更加异质的群体。这些以前未被量化的内在神经特征与神经编码之间的关系将有助于计算、理论和系统神经科学家理解神经元群体如何改变它们的编码特性,例如通过神经调质的影响。兴奋性神经元的内在特性的可变性为何比抑制性神经元的更大,这是一个令人兴奋的问题,需要未来的研究来解决。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d938/11115315/9e682dc7feaa/pcbi.1012043.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验