Suppr超能文献

无序的朊病毒结构域会形成朊病毒和淀粉样蛋白。

Scrambled prion domains form prions and amyloid.

作者信息

Ross Eric D, Baxa Ulrich, Wickner Reed B

机构信息

Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA.

出版信息

Mol Cell Biol. 2004 Aug;24(16):7206-13. doi: 10.1128/MCB.24.16.7206-7213.2004.

Abstract

The [URE3] prion of Saccharomyces cerevisiae is a self-propagating amyloid form of Ure2p. The amino-terminal prion domain of Ure2p is necessary and sufficient for prion formation and has a high glutamine (Q) and asparagine (N) content. Such Q/N-rich domains are found in two other yeast prion proteins, Sup35p and Rnq1p, although none of the many other yeast Q/N-rich domain proteins have yet been found to be prions. To examine the role of amino acid sequence composition in prion formation, we used Ure2p as a model system and generated five Ure2p variants in which the order of the amino acids in the prion domain was randomly shuffled while keeping the amino acid composition and C-terminal domain unchanged. Surprisingly, all five formed prions in vivo, with a range of frequencies and stabilities, and the prion domains of all five readily formed amyloid fibers in vitro. Although it is unclear whether other amyloid-forming proteins would be equally resistant to scrambling, this result demonstrates that [URE3] formation is driven primarily by amino acid composition, largely independent of primary sequence.

摘要

酿酒酵母的[URE3]朊病毒是Ure2p的一种自我传播的淀粉样形式。Ure2p的氨基末端朊病毒结构域对于朊病毒形成是必需且充分的,并且具有高谷氨酰胺(Q)和天冬酰胺(N)含量。在另外两种酵母朊病毒蛋白Sup35p和Rnq1p中也发现了这种富含Q/N的结构域,尽管尚未发现许多其他富含酵母Q/N结构域的蛋白是朊病毒。为了研究氨基酸序列组成在朊病毒形成中的作用,我们以Ure2p作为模型系统,生成了五个Ure2p变体,其中朊病毒结构域中的氨基酸顺序被随机打乱,同时保持氨基酸组成和C末端结构域不变。令人惊讶的是,所有五个变体在体内均形成了朊病毒,频率和稳定性各不相同,并且所有五个变体的朊病毒结构域在体外都很容易形成淀粉样纤维。虽然尚不清楚其他形成淀粉样蛋白的蛋白质是否同样抗序列重排,但这一结果表明[URE3]的形成主要由氨基酸组成驱动,很大程度上独立于一级序列。

相似文献

1
Scrambled prion domains form prions and amyloid.
Mol Cell Biol. 2004 Aug;24(16):7206-13. doi: 10.1128/MCB.24.16.7206-7213.2004.
2
Primary sequence independence for prion formation.
Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12825-30. doi: 10.1073/pnas.0506136102. Epub 2005 Aug 25.
3
A promiscuous prion: efficient induction of [URE3] prion formation by heterologous prion domains.
Genetics. 2009 Nov;183(3):929-40. doi: 10.1534/genetics.109.109322. Epub 2009 Sep 14.
4
Yeast prions: evolution of the prion concept.
Prion. 2007 Apr-Jun;1(2):94-100. doi: 10.4161/pri.1.2.4664. Epub 2007 Apr 28.
5
Prion amyloid structure explains templating: how proteins can be genes.
FEMS Yeast Res. 2010 Dec;10(8):980-91. doi: 10.1111/j.1567-1364.2010.00666.x.
6
Amyloids of shuffled prion domains that form prions have a parallel in-register beta-sheet structure.
Biochemistry. 2008 Apr 1;47(13):4000-7. doi: 10.1021/bi7024589. Epub 2008 Mar 7.
7
Prion generation in vitro: amyloid of Ure2p is infectious.
EMBO J. 2005 Sep 7;24(17):3082-92. doi: 10.1038/sj.emboj.7600772. Epub 2005 Aug 11.
8
Conservation of a portion of the S. cerevisiae Ure2p prion domain that interacts with the full-length protein.
Proc Natl Acad Sci U S A. 2002 Dec 10;99 Suppl 4(Suppl 4):16384-91. doi: 10.1073/pnas.162349599. Epub 2002 Aug 12.
9
Prion variants and species barriers among Saccharomyces Ure2 proteins.
Genetics. 2009 Mar;181(3):1159-67. doi: 10.1534/genetics.108.099929. Epub 2009 Jan 5.
10
In vitro analysis of SpUre2p, a prion-related protein, exemplifies the relationship between amyloid and prion.
J Biol Chem. 2007 Mar 16;282(11):7912-20. doi: 10.1074/jbc.M608652200. Epub 2007 Jan 17.

引用本文的文献

1
Anti-Prion Systems in Saccharomyces cerevisiae.
J Neurochem. 2025 Mar;169(3):e70045. doi: 10.1111/jnc.70045.
2
On the Significance of the Terminal Location of Prion-Forming Regions of Yeast Proteins.
Int J Mol Sci. 2025 Feb 14;26(4):1637. doi: 10.3390/ijms26041637.
4
Phase separation is regulated by post-translational modifications and participates in the developments of human diseases.
Heliyon. 2024 Jul 3;10(13):e34035. doi: 10.1016/j.heliyon.2024.e34035. eCollection 2024 Jul 15.
7
Protein intrinsically disordered regions have a non-random, modular architecture.
Bioinformatics. 2023 Dec 1;39(12). doi: 10.1093/bioinformatics/btad732.
9
How Big Is the Yeast Prion Universe?
Int J Mol Sci. 2023 Jul 19;24(14):11651. doi: 10.3390/ijms241411651.
10
Evolution of sequence traits of prion-like proteins linked to amyotrophic lateral sclerosis (ALS).
PeerJ. 2022 Nov 17;10:e14417. doi: 10.7717/peerj.14417. eCollection 2022.

本文引用的文献

2
Heritable activity: a prion that propagates by covalent autoactivation.
Genes Dev. 2003 Sep 1;17(17):2083-7. doi: 10.1101/gad.1115803. Epub 2003 Aug 15.
3
Rationalization of the effects of mutations on peptide and protein aggregation rates.
Nature. 2003 Aug 14;424(6950):805-8. doi: 10.1038/nature01891.
4
Architecture of Ure2p prion filaments: the N-terminal domains form a central core fiber.
J Biol Chem. 2003 Oct 31;278(44):43717-27. doi: 10.1074/jbc.M306004200. Epub 2003 Aug 12.
6
Amino acid residue 184 of yeast Hsp104 chaperone is critical for prion-curing by guanidine, prion propagation, and thermotolerance.
Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9936-41. doi: 10.1073/pnas.152333299. Epub 2002 Jul 8.
7
Guanidine hydrochloride inhibits the generation of prion "seeds" but not prion protein aggregation in yeast.
Mol Cell Biol. 2002 Aug;22(15):5593-605. doi: 10.1128/MCB.22.15.5593-5605.2002.
9
Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein.
Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5253-60. doi: 10.1073/pnas.082097899.
10
Yeast prion protein derivative defective in aggregate shearing and production of new 'seeds'.
EMBO J. 2001 Dec 3;20(23):6683-91. doi: 10.1093/emboj/20.23.6683.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验