Fishelson Ma'ayan, Geiger Dan
Computer Science Department, Technion, Haifa 32000, Israel.
J Comput Biol. 2004;11(2-3):263-75. doi: 10.1089/1066527041410409.
Genetic linkage analysis is a challenging application which requires Bayesian networks consisting of thousands of vertices. Consequently, computing the probability of data, which is needed for learning linkage parameters, using exact computation procedures calls for an extremely efficient implementation that carefully optimizes the order of conditioning and summation operations. In this paper, we present the use of stochastic greedy algorithms for optimizing this order. Our algorithm has been incorporated into the newest version of SUPERLINK, which is a fast genetic linkage program for exact likelihood computations in general pedigrees. We demonstrate an order of magnitude improvement in run times of likelihood computations using our new optimization algorithm and hence enlarge the class of problems that can be handled effectively by exact computations.
基因连锁分析是一项具有挑战性的应用,它需要由数千个顶点组成的贝叶斯网络。因此,使用精确计算程序来计算学习连锁参数所需的数据概率,需要一种极其高效的实现方式,这种方式要仔细优化条件设定和求和运算的顺序。在本文中,我们介绍了使用随机贪心算法来优化此顺序。我们的算法已被纳入SUPERLINK的最新版本,SUPERLINK是一个用于一般家系中精确似然计算的快速基因连锁程序。我们证明,使用我们的新优化算法,似然计算的运行时间提高了一个数量级,从而扩大了可以通过精确计算有效处理的问题类别。