Lee Sanghoon, Jiang Xia
Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.
PLoS One. 2017 Aug 9;12(8):e0182666. doi: 10.1371/journal.pone.0182666. eCollection 2017.
The dysregulation of microRNAs (miRNAs) alters expression level of pro-oncogenic or tumor suppressive mRNAs in breast cancer, and in the long run, causes multiple biological abnormalities. Identification of such interactions of miRNA-mRNA requires integrative analysis of miRNA-mRNA expression profile data. However, current approaches have limitations to consider the regulatory relationship between miRNAs and mRNAs and to implicate the relationship with phenotypic abnormality and cancer pathogenesis.
METHODOLOGY/FINDINGS: We modeled causal relationships between genomic expression and clinical data using a Bayesian Network (BN), with the goal of discovering miRNA-mRNA interactions that are associated with cancer pathogenesis. The Multiple Beam Search (MBS) algorithm learned interactions from data and discovered that hsa-miR-21, hsa-miR-10b, hsa-miR-448, and hsa-miR-96 interact with oncogenes, such as, CCND2, ESR1, MET, NOTCH1, TGFBR2 and TGFB1 that promote tumor metastasis, invasion, and cell proliferation. We also calculated Bayesian network posterior probability (BNPP) for the models discovered by the MBS algorithm to validate true models with high likelihood.
CONCLUSION/SIGNIFICANCE: The MBS algorithm successfully learned miRNA and mRNA expression profile data using a BN, and identified miRNA-mRNA interactions that probabilistically affect breast cancer pathogenesis. The MBS algorithm is a potentially useful tool for identifying interacting gene pairs implicated by the deregulation of expression.
微小RNA(miRNA)失调会改变乳腺癌中原癌基因或抑癌基因mRNA的表达水平,长期来看会导致多种生物学异常。识别miRNA与mRNA之间的这种相互作用需要对miRNA - mRNA表达谱数据进行综合分析。然而,目前的方法在考虑miRNA与mRNA之间的调控关系以及涉及与表型异常和癌症发病机制的关系方面存在局限性。
方法/发现:我们使用贝叶斯网络(BN)对基因组表达与临床数据之间的因果关系进行建模,目的是发现与癌症发病机制相关的miRNA - mRNA相互作用。多波束搜索(MBS)算法从数据中学习相互作用,并发现hsa - miR - 21、hsa - miR - 10b、hsa - miR - 448和hsa - miR - 96与促进肿瘤转移、侵袭和细胞增殖的癌基因如CCND2、ESR1、MET、NOTCH1、TGFBR2和TGFB1相互作用。我们还计算了MBS算法发现的模型的贝叶斯网络后验概率(BNPP),以验证具有高可能性的真实模型。
结论/意义:MBS算法使用BN成功学习了miRNA和mRNA表达谱数据,并识别了可能影响乳腺癌发病机制的miRNA - mRNA相互作用。MBS算法是识别因表达失调而涉及的相互作用基因对的潜在有用工具。