Teo Benjamin, Bastide Paul, Ané Cécile
Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA.
IMAG, Université de Montpellier, CNRS, Montpellier, France.
Philos Trans R Soc Lond B Biol Sci. 2025 Feb 13;380(1919):20230310. doi: 10.1098/rstb.2023.0310. Epub 2025 Feb 20.
The evolution of molecular and phenotypic traits is commonly modelled using Markov processes along a phylogeny. This phylogeny can be a tree, or a network if it includes reticulations, representing events such as hybridization or admixture. Computing the likelihood of data observed at the leaves is costly as the size and complexity of the phylogeny grows. Efficient algorithms exist for trees, but cannot be applied to networks. We show that a vast array of models for trait evolution along phylogenetic networks can be reformulated as graphical models, for which efficient belief propagation algorithms exist. We provide a brief review of belief propagation on general graphical models, then focus on linear Gaussian models for continuous traits. We show how belief propagation techniques can be applied for exact or approximate (but more scalable) likelihood and gradient calculations, and prove novel results for efficient parameter inference of some models. We highlight the possible fruitful interactions between graphical models and phylogenetic methods. For example, approximate likelihood approaches have the potential to greatly reduce computational costs for phylogenies with reticulations.This article is part of the theme issue '"A mathematical theory of evolution": phylogenetic models dating back 100 years'.
分子和表型性状的进化通常沿着系统发育树使用马尔可夫过程进行建模。如果该系统发育树包含代表杂交或混合等事件的网状结构,那么它可以是一棵树,也可以是一个网络。随着系统发育树的规模和复杂性增加,计算在叶节点观察到的数据的似然性成本很高。对于树存在高效算法,但不能应用于网络。我们表明,沿着系统发育网络的大量性状进化模型可以重新表述为图形模型,而对于这些图形模型存在高效的信念传播算法。我们简要回顾了一般图形模型上的信念传播,然后专注于连续性状的线性高斯模型。我们展示了信念传播技术如何应用于精确或近似(但更具可扩展性)的似然性和梯度计算,并证明了一些模型高效参数推断的新结果。我们强调了图形模型和系统发育方法之间可能富有成效的相互作用。例如,近似似然性方法有可能大大降低具有网状结构的系统发育树的计算成本。本文是主题为“进化的数学理论”:可追溯到100年前的系统发育模型的一部分。