Suppr超能文献

实时定量逆转录-PCR数据的标准化:一种基于模型的方差估计方法,用于鉴定适合标准化的基因,并应用于膀胱癌和结肠癌数据集。

Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets.

作者信息

Andersen Claus Lindbjerg, Jensen Jens Ledet, Ørntoft Torben Falck

机构信息

Molecular Diagnostic Laboratory, Department of Clinical Biochemistry, Aarhus University Hospital, Skejby, DK-8200 Aarhus N, Denmark.

出版信息

Cancer Res. 2004 Aug 1;64(15):5245-50. doi: 10.1158/0008-5472.CAN-04-0496.

Abstract

Accurate normalization is an absolute prerequisite for correct measurement of gene expression. For quantitative real-time reverse transcription-PCR (RT-PCR), the most commonly used normalization strategy involves standardization to a single constitutively expressed control gene. However, in recent years, it has become clear that no single gene is constitutively expressed in all cell types and under all experimental conditions, implying that the expression stability of the intended control gene has to be verified before each experiment. We outline a novel, innovative, and robust strategy to identify stably expressed genes among a set of candidate normalization genes. The strategy is rooted in a mathematical model of gene expression that enables estimation not only of the overall variation of the candidate normalization genes but also of the variation between sample subgroups of the sample set. Notably, the strategy provides a direct measure for the estimated expression variation, enabling the user to evaluate the systematic error introduced when using the gene. In a side-by-side comparison with a previously published strategy, our model-based approach performed in a more robust manner and showed less sensitivity toward coregulation of the candidate normalization genes. We used the model-based strategy to identify genes suited to normalize quantitative RT-PCR data from colon cancer and bladder cancer. These genes are UBC, GAPD, and TPT1 for the colon and HSPCB, TEGT, and ATP5B for the bladder. The presented strategy can be applied to evaluate the suitability of any normalization gene candidate in any kind of experimental design and should allow more reliable normalization of RT-PCR data.

摘要

准确的标准化是正确测量基因表达的绝对前提。对于定量实时逆转录聚合酶链反应(RT-PCR),最常用的标准化策略是将其标准化为单个组成型表达的对照基因。然而,近年来,已经清楚的是,没有单个基因在所有细胞类型和所有实验条件下都是组成型表达的,这意味着在每次实验之前都必须验证预期对照基因的表达稳定性。我们概述了一种新颖、创新且稳健的策略,用于在一组候选标准化基因中识别稳定表达的基因。该策略基于基因表达的数学模型,不仅能够估计候选标准化基因的总体变异,还能估计样本集样本亚组之间的变异。值得注意的是,该策略为估计的表达变异提供了直接度量,使用户能够评估使用该基因时引入的系统误差。在与先前发表的策略的并列比较中,我们基于模型的方法表现得更稳健,并且对候选标准化基因的共调节敏感性较低。我们使用基于模型的策略来识别适合标准化来自结肠癌和膀胱癌的定量RT-PCR数据的基因。对于结肠癌,这些基因是UBC、GAPD和TPT1;对于膀胱癌,是HSPCB、TEGT和ATP5B。所提出的策略可应用于评估任何实验设计中任何标准化基因候选物的适用性,并应能实现更可靠的RT-PCR数据标准化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验