Suppr超能文献

寄生曲霉中产生毒素和菌核需要veA。

veA is required for toxin and sclerotial production in Aspergillus parasiticus.

作者信息

Calvo Ana M, Bok Jinwoo, Brooks Wilhelmina, Keller Nancy P

机构信息

Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA.

出版信息

Appl Environ Microbiol. 2004 Aug;70(8):4733-9. doi: 10.1128/AEM.70.8.4733-4739.2004.

Abstract

It was long been noted that secondary metabolism is associated with fungal development. In Aspergillus nidulans, conidiation and mycotoxin production are linked by a G protein signaling pathway. Also in A. nidulans, cleistothecial development and mycotoxin production are controlled by a gene called veA. Here we report the characterization of a veA ortholog in the aflatoxin-producing fungus A. parasiticus. Cleistothecia are not produced by Aspergillus parasiticus; instead, this fungus produces spherical structures called sclerotia that allow for survival under adverse conditions. Deletion of veA from A. parasiticus resulted in the blockage of sclerotial formation as well as a blockage in the production of aflatoxin intermediates. Our results indicate that A. parasiticus veA is required for the expression of aflR and aflJ, which regulate the activation of the aflatoxin gene cluster. In addition to these findings, we observed that deletion of veA reduced conidiation both on the culture medium and on peanut seed. The fact that veA is necessary for conidiation, production of resistant structures, and aflatoxin biosynthesis makes veA a good candidate gene to control aflatoxin biosynthesis or fungal development and in this way to greatly decrease its devastating impact on health and the economy.

摘要

长期以来人们一直注意到,次生代谢与真菌发育相关。在构巢曲霉中,分生孢子形成和霉菌毒素产生通过一条G蛋白信号通路相连。同样在构巢曲霉中,闭囊壳发育和霉菌毒素产生受一个名为veA的基因控制。在此我们报道了产黄曲霉毒素的寄生曲霉中veA直系同源基因的特征。寄生曲霉不产生闭囊壳;相反,这种真菌产生称为菌核的球形结构,使其能够在不利条件下存活。从寄生曲霉中缺失veA导致菌核形成受阻以及黄曲霉毒素中间体产生受阻。我们的结果表明,寄生曲霉veA是调控黄曲霉毒素基因簇激活的aflR和aflJ表达所必需的。除了这些发现,我们观察到缺失veA会降低培养基和花生种子上的分生孢子形成。veA对于分生孢子形成、抗性结构产生和黄曲霉毒素生物合成是必需的,这一事实使得veA成为控制黄曲霉毒素生物合成或真菌发育从而极大降低其对健康和经济的破坏性影响的一个良好候选基因。

相似文献

1
veA is required for toxin and sclerotial production in Aspergillus parasiticus.
Appl Environ Microbiol. 2004 Aug;70(8):4733-9. doi: 10.1128/AEM.70.8.4733-4739.2004.
2
Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production.
Fungal Genet Biol. 2013 Sep-Oct;58-59:71-9. doi: 10.1016/j.fgb.2013.08.009. Epub 2013 Aug 29.
3
Association of aflatoxin biosynthesis and sclerotial development in Aspergillus parasiticus.
Mycopathologia. 2002;153(1):41-8. doi: 10.1023/a:1015211915310.
4
Elucidation of veA-dependent genes associated with aflatoxin and sclerotial production in Aspergillus flavus by functional genomics.
Appl Microbiol Biotechnol. 2007 Oct;76(5):1107-18. doi: 10.1007/s00253-007-1081-y. Epub 2007 Jul 24.
5
The Aspergillus parasiticus protein AFLJ interacts with the aflatoxin pathway-specific regulator AFLR.
Mol Genet Genomics. 2003 Mar;268(6):711-9. doi: 10.1007/s00438-003-0809-3. Epub 2003 Feb 18.
6
rtfA, a putative RNA-Pol II transcription elongation factor gene, is necessary for normal morphological and chemical development in Aspergillus flavus.
Appl Microbiol Biotechnol. 2016 Jun;100(11):5029-41. doi: 10.1007/s00253-016-7418-7. Epub 2016 Mar 28.
7
Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation.
Appl Microbiol Biotechnol. 2007 Jan;73(5):1158-68. doi: 10.1007/s00253-006-0581-5. Epub 2006 Sep 19.
8
Lack of interaction between AFLR and AFLJ contributes to nonaflatoxigenicity of Aspergillus sojae.
J Biotechnol. 2004 Feb 5;107(3):245-53. doi: 10.1016/j.jbiotec.2003.10.012.
10
Involvement of the nadA gene in formation of G-group aflatoxins in Aspergillus parasiticus.
Fungal Genet Biol. 2008 Jul;45(7):1081-93. doi: 10.1016/j.fgb.2008.03.003. Epub 2008 Mar 16.

引用本文的文献

1
ZfpA-Dependent Quorum Sensing Shifts in Morphology and Secondary Metabolism in Aspergillus flavus.
Environ Microbiol. 2025 Apr;27(4):e70100. doi: 10.1111/1462-2920.70100.
2
Transcriptomic atlas throughout Coccidioides development reveals key phase-enriched transcripts of this important fungal pathogen.
PLoS Biol. 2025 Apr 15;23(4):e3003066. doi: 10.1371/journal.pbio.3003066. eCollection 2025 Apr.
3
Gene regulatory network resource aids in predicting trans-acting regulators of biosynthetic gene clusters in .
mBio. 2025 Mar 12;16(3):e0387424. doi: 10.1128/mbio.03874-24. Epub 2025 Feb 18.
4
Aspergillus Mycotoxins: The Major Food Contaminants.
Adv Sci (Weinh). 2025 Mar;12(9):e2412757. doi: 10.1002/advs.202412757. Epub 2025 Feb 7.
5
Fungal chemical warfare: the role of aflatoxin and fumonisin in governing the interaction between the maize pathogens, and .
Front Cell Infect Microbiol. 2025 Jan 3;14:1513134. doi: 10.3389/fcimb.2024.1513134. eCollection 2024.
7
Beyond morphogenesis and secondary metabolism: function of Velvet proteins and LaeA in fungal pathogenesis.
Appl Environ Microbiol. 2024 Oct 23;90(10):e0081924. doi: 10.1128/aem.00819-24. Epub 2024 Sep 4.
9
An oxylipin signal confers protection against antifungal echinocandins in pathogenic aspergilli.
Nat Commun. 2024 May 4;15(1):3770. doi: 10.1038/s41467-024-48231-2.
10
Ca affects the hyphal differentiation to sclerotia formation of .
Microbiol Spectr. 2024 Jun 4;12(6):e0020024. doi: 10.1128/spectrum.00200-24. Epub 2024 Apr 30.

本文引用的文献

1
Genetics and physiology of aflatoxin biosynthesis.
Annu Rev Phytopathol. 1998;36:329-62. doi: 10.1146/annurev.phyto.36.1.329.
3
The Aspergillus parasiticus protein AFLJ interacts with the aflatoxin pathway-specific regulator AFLR.
Mol Genet Genomics. 2003 Mar;268(6):711-9. doi: 10.1007/s00438-003-0809-3. Epub 2003 Feb 18.
4
The veA gene activates sexual development in Aspergillus nidulans.
Fungal Genet Biol. 2002 Oct;37(1):72-80. doi: 10.1016/s1087-1845(02)00029-4.
5
Relationship between secondary metabolism and fungal development.
Microbiol Mol Biol Rev. 2002 Sep;66(3):447-59, table of contents. doi: 10.1128/MMBR.66.3.447-459.2002.
6
Association of aflatoxin biosynthesis and sclerotial development in Aspergillus parasiticus.
Mycopathologia. 2002;153(1):41-8. doi: 10.1023/a:1015211915310.
7
Complex control of the developmental regulatory locus brlA in Aspergillus nidulans.
Mol Genet Genomics. 2001 Oct;266(2):260-70. doi: 10.1007/s004380100552.
8
Genetic connection between fatty acid metabolism and sporulation in Aspergillus nidulans.
J Biol Chem. 2001 Jul 13;276(28):25766-74. doi: 10.1074/jbc.M100732200. Epub 2001 May 14.
10
Generation of aflR disruption mutants of Aspergillus parasiticus.
Appl Microbiol Biotechnol. 2000 Jun;53(6):680-4. doi: 10.1007/s002530000319.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验