Suppr超能文献

寄生曲霉中nadA基因在G组黄曲霉毒素形成中的作用。

Involvement of the nadA gene in formation of G-group aflatoxins in Aspergillus parasiticus.

作者信息

Cai Jingjing, Zeng Hongmei, Shima Yoko, Hatabayashi Hidemi, Nakagawa Hiroyuki, Ito Yasuhiro, Adachi Yoshikazu, Nakajima Hiromitsu, Yabe Kimiko

机构信息

Food Biotechnology Division, National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan.

出版信息

Fungal Genet Biol. 2008 Jul;45(7):1081-93. doi: 10.1016/j.fgb.2008.03.003. Epub 2008 Mar 16.

Abstract

The nadA gene is present at the end of the aflatoxin gene cluster in the genome of Aspergillus parasiticus as well as in Aspergillus flavus. RT-PCR analyses showed that the nadA gene was expressed in an aflatoxin-inducible YES medium, but not in an aflatoxin-non-inducible YEP medium. The nadA gene was not expressed in the aflR gene-deletion mutant, irrespective of the culture medium used. To clarify the nadA gene's function, we disrupted the gene in aflatoxigenic A. parasiticus. The four nadA-deletion mutants that were isolated commonly accumulated a novel yellow-fluorescent pigment (named NADA) in mycelia as well as in culture medium. When the mutants and the wild-type strain were cultured for 3 days in YES medium, the mutants each produced about 50% of the amounts of G-group aflatoxins that the wild-type strain produced. In contrast, the amounts of B-group aflatoxins did not significantly differ between the mutants and the wild-type strain. The NADA pigment was so unstable that it could non-enzymatically change to aflatoxin G(1) (AFG(1)). LC-MS measurement showed that the molecular mass of NADA was 360, which is 32 higher than that of AFG(1). We previously reported that at least one cytosol enzyme, together with two other microsome enzymes, is necessary for the formation of AFG(1) from O-methylsterigmatocystin (OMST) in the cell-free system of A. parasiticus. The present study confirmed that the cytosol fraction of the wild-type A.parasiticus strain significantly enhanced the AFG(1) formation from OMST, whereas the cytosol fraction of the nadA-deletion mutant did not show the same activity. Furthermore, the cytosol fraction of the wild-type strain showed the enzyme activity catalyzing the reaction from NADA to AFG(1), which required NADPH or NADH, indicating that NADA is a precursor of AFG(1); in contrast, the cytosol fraction of the nadA-deletion mutant did not show the same enzyme activity. These results demonstrated that the NadA protein is the cytosol enzyme required for G-aflatoxin biosynthesis from OMST, and that it catalyzes the reaction from NADA to AFG(1), the last step in G-aflatoxin biosynthesis.

摘要

在寄生曲霉和黄曲霉的基因组中,nadA基因位于黄曲霉毒素基因簇的末端。逆转录聚合酶链反应(RT-PCR)分析表明,nadA基因在黄曲霉毒素诱导型的YES培养基中表达,但在黄曲霉毒素非诱导型的YEP培养基中不表达。无论使用何种培养基,nadA基因在aflR基因缺失突变体中均不表达。为了阐明nadA基因的功能,我们在产黄曲霉毒素的寄生曲霉中破坏了该基因。分离得到的四个nadA缺失突变体在菌丝体和培养基中均共同积累了一种新型的黄色荧光色素(命名为NADA)。当突变体和野生型菌株在YES培养基中培养3天时,每个突变体产生的G组黄曲霉毒素量约为野生型菌株产生量的50%。相比之下,突变体和野生型菌株之间B组黄曲霉毒素的量没有显著差异。NADA色素非常不稳定,可非酶促转化为黄曲霉毒素G(1)(AFG(1))。液相色谱-质谱(LC-MS)测量表明,NADA的分子量为360,比AFG(1)高32。我们之前报道过,在寄生曲霉的无细胞体系中,从O-甲基柄曲霉素(OMST)形成AFG(1)至少需要一种胞质溶胶酶以及另外两种微粒体酶。本研究证实,野生型寄生曲霉菌株的胞质溶胶部分显著增强了从OMST形成AFG(1)的能力,而nadA缺失突变体的胞质溶胶部分则没有表现出相同的活性。此外,野生型菌株的胞质溶胶部分显示出催化从NADA到AFG(1)反应的酶活性,该反应需要烟酰胺腺嘌呤二核苷酸磷酸(NADPH)或烟酰胺腺嘌呤二核苷酸(NADH),这表明NADA是AFG(1)的前体;相比之下,nadA缺失突变体的胞质溶胶部分没有表现出相同的酶活性。这些结果表明,NadA蛋白是从OMST生物合成G-黄曲霉毒素所需的胞质溶胶酶,并且它催化从NADA到AFG(1)的反应,这是G-黄曲霉毒素生物合成的最后一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验