Kessler Ronald C, Abelson Jamie, Demler Olga, Escobar Javier I, Gibbon Miriam, Guyer Margaret E, Howes Mary J, Jin Robert, Vega William A, Walters Ellen E, Wang Philip, Zaslavsky Alan, Zheng Hui
Department of Health Care Policy, Harvard Medical School, Boston, MA 02115, USA.
Int J Methods Psychiatr Res. 2004;13(2):122-39. doi: 10.1002/mpr.169.
An overview is presented of the rationale, design, and analysis plan for the WMH-CIDI clinical calibration studies. As no clinical gold standard assessment is available for the DSM-IV disorders assessed in the WMH-CIDI, we adopted the goal of calibration rather than validation; that is, we asked whether WMH-CIDI diagnoses are 'consistent' with diagnoses based on a state-of-the-art clinical research diagnostic interview (SCID; Structured Clinical Interview for DSM-IV) rather than whether they are 'correct'. Consistency is evaluated both at the aggregate level (consistency of WMH-CIDI and SCID prevalence estimates) and at the individual level (consistency of WMH-CIDI and SCID diagnostic classifications). Although conventional statistics (sensitivity, specificity, Cohen's kappa) are used to describe diagnostic consistency, an argument is made for considering the area under the receiver operator curve (AUC) to be a more useful general-purpose measure of consistency. In addition, more detailed analyses are used to evaluate consistency on a substantive level. These analyses begin by estimating prediction equations in a clinical calibration subsample, with WMH-CIDI symptom-level data used to predict SCID diagnoses, and using the coefficients from these equations to assign predicted probabilities of SCID diagnoses to each respondent in the remainder of the sample. Substantive analyses then investigate whether estimates of prevalence and associations when based on WMH-CIDI diagnoses are consistent with those based on predicted SCID diagnoses. Multiple imputation is used to adjust estimated standard errors for the imprecision introduced by SCID diagnoses being imputed under a model rather than measured directly. A brief illustration of this approach is presented in comparing the precision of SCID and predicted SCID estimates of prevalence and correlates under varying sample designs.
本文概述了世界精神卫生调查综合国际诊断访谈(WMH-CIDI)临床校准研究的基本原理、设计和分析计划。由于对于WMH-CIDI中所评估的《精神疾病诊断与统计手册》第四版(DSM-IV)障碍,没有可用的临床金标准评估方法,我们采用了校准而非验证的目标;也就是说,我们探讨的是WMH-CIDI诊断是否与基于最新临床研究诊断访谈(SCID;《DSM-IV结构化临床访谈》)的诊断“一致”,而非它们是否“正确”。一致性在总体水平(WMH-CIDI与SCID患病率估计值的一致性)和个体水平(WMH-CIDI与SCID诊断分类的一致性)上进行评估。虽然使用传统统计方法(敏感性、特异性、科恩kappa系数)来描述诊断一致性,但有人认为,考虑接受者操作特征曲线下面积(AUC)是一种更有用的通用一致性度量方法。此外,还使用更详细的分析从实质层面评估一致性。这些分析首先在临床校准子样本中估计预测方程,使用WMH-CIDI症状水平数据来预测SCID诊断,并使用这些方程的系数为样本其余部分的每个受访者分配SCID诊断的预测概率。然后,实质分析调查基于WMH-CIDI诊断的患病率和关联估计是否与基于预测的SCID诊断的估计一致。多重填补用于调整估计标准误,以应对因SCID诊断是在模型下推算而非直接测量所引入的不精确性。在比较不同样本设计下SCID和预测的SCID患病率及相关因素估计的精度时,给出了此方法的简要示例。