Suppr超能文献

通过盐析揭示宽通道的离子选择性:外膜孔蛋白F的不对称性

Salting out the ionic selectivity of a wide channel: the asymmetry of OmpF.

作者信息

Alcaraz Antonio, Nestorovich Ekaterina M, Aguilella-Arzo Marcel, Aguilella Vicente M, Bezrukov Sergey M

机构信息

Departamento de Ciencias Experimentales, Universidad Jaume I, Castellón, Spain.

出版信息

Biophys J. 2004 Aug;87(2):943-57. doi: 10.1529/biophysj.104/043414.

Abstract

Although the crystallographic structure of the bacterial porin OmpF has been known for a decade, the physical mechanisms of its ionic selectivity are still under investigation. We address this issue in a series of experiments with varied pH, salt concentrations, inverted salt gradient, and charged and uncharged lipids. Measuring reversal potential, we show that OmpF selectivity (traditionally regarded as slightly cationic) depends strongly on pH and salt concentration and is conditionally asymmetric, that is, the calculated selectivity is sensitive to the direction of salt concentration gradient. At neutral pH and subdecimolar salt concentrations the channel exhibits nearly ideal cation selectivity (t(G)(+)=0.98+/-0.01). Substituting neutral DPhPC with DPhPS, we demonstrate that the fixed charge of the host lipid has a small but measurable effect on the channel reversal potential. The available structural information allows for a qualitative explanation of our experimental findings. These findings now lead us to re-examine the ionization state of 102 titratable sites of the OmpF channel. Using standard methods of continuum electrostatics tailored to our particular purpose, we find the charge distribution in the channel as a function of solution acidity and relate the pH-dependent asymmetry in channel selectivity to the pH-dependent asymmetry in charge distribution. In an attempt to find a simple phenomenological description of our results, we also discuss different macroscopic models of electrodiffusion through large channels.

摘要

尽管细菌孔蛋白OmpF的晶体结构已为人所知达十年之久,但其离子选择性的物理机制仍在研究之中。我们通过一系列实验来探讨这个问题,这些实验涉及不同的pH值、盐浓度、反向盐梯度以及带电和不带电的脂质。通过测量反转电位,我们发现OmpF的选择性(传统上被认为略带阳离子选择性)强烈依赖于pH值和盐浓度,并且具有条件性不对称性,即计算出的选择性对盐浓度梯度的方向敏感。在中性pH值和亚摩尔盐浓度下,该通道表现出近乎理想的阳离子选择性(t(G)(+)=0.98±0.01)。用DPhPS替代中性的DPhPC,我们证明主体脂质的固定电荷对通道反转电位有微小但可测量的影响。现有的结构信息能够对我们的实验结果进行定性解释。这些发现促使我们重新审视OmpF通道102个可滴定位点的电离状态。使用针对我们特定目的定制的连续介质静电学标准方法,我们找到了通道中电荷分布随溶液酸度的变化情况,并将通道选择性中依赖于pH值的不对称性与电荷分布中依赖于pH值的不对称性联系起来。为了找到对我们结果的简单唯象描述,我们还讨论了通过大通道的电扩散的不同宏观模型。

相似文献

1
Salting out the ionic selectivity of a wide channel: the asymmetry of OmpF.
Biophys J. 2004 Aug;87(2):943-57. doi: 10.1529/biophysj.104/043414.
2
Electrostatic properties and macroscopic electrodiffusion in OmpF porin and mutants.
Bioelectrochemistry. 2007 May;70(2):320-7. doi: 10.1016/j.bioelechem.2006.04.005.
3
Analysis of SARS-CoV E protein ion channel activity by tuning the protein and lipid charge.
Biochim Biophys Acta. 2013 Sep;1828(9):2026-31. doi: 10.1016/j.bbamem.2013.05.008. Epub 2013 May 18.
4
Rectification properties and pH-dependent selectivity of meningococcal class 1 porin.
Biophys J. 2008 Feb 15;94(4):1194-202. doi: 10.1529/biophysj.107.116186. Epub 2007 Oct 26.
6
Specific ion effects: why the properties of lysozyme in salt solutions follow a Hofmeister series.
Biophys J. 2003 Aug;85(2):686-94. doi: 10.1016/S0006-3495(03)74512-3.
7
Critical assessment of OmpF channel selectivity: merging information from different experimental protocols.
J Phys Condens Matter. 2010 Nov 17;22(45):454106. doi: 10.1088/0953-8984/22/45/454106. Epub 2010 Oct 29.
9
Hofmeister effects in membrane biology: the role of ionic dispersion potentials.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Oct;68(4 Pt 1):041902. doi: 10.1103/PhysRevE.68.041902. Epub 2003 Oct 3.
10
Interaction of zwitterionic penicillins with the OmpF channel facilitates their translocation.
Biophys J. 2006 Mar 1;90(5):1617-27. doi: 10.1529/biophysj.105.075192. Epub 2005 Dec 9.

引用本文的文献

1
Tackling the outer membrane: facilitating compound entry into Gram-negative bacterial pathogens.
NPJ Antimicrob Resist. 2023 Dec 20;1(1):17. doi: 10.1038/s44259-023-00016-1.
3
Channel Formation in Cry Toxins: An Alphafold-2 Perspective.
Int J Mol Sci. 2023 Nov 27;24(23):16809. doi: 10.3390/ijms242316809.
4
Gating of β-Barrel Protein Pores, Porins, and Channels: An Old Problem with New Facets.
Int J Mol Sci. 2023 Jul 28;24(15):12095. doi: 10.3390/ijms241512095.
5
Influence of Membrane Asymmetry on OmpF Insertion, Orientation and Function.
Membranes (Basel). 2023 May 16;13(5):517. doi: 10.3390/membranes13050517.
6
Fluids and Electrolytes under Confinement in Single-Digit Nanopores.
Chem Rev. 2023 Mar 22;123(6):2737-2831. doi: 10.1021/acs.chemrev.2c00155. Epub 2023 Mar 10.
7
Electrophysiological characterization of a schistosome transient receptor potential channel activated by praziquantel.
Int J Parasitol. 2023 Jul;53(8):415-425. doi: 10.1016/j.ijpara.2022.11.005. Epub 2023 Jan 4.
8
DNA-Based Optical Quantification of Ion Transport across Giant Vesicles.
ACS Nano. 2022 Oct 25;16(10):17128-17138. doi: 10.1021/acsnano.2c07496. Epub 2022 Oct 12.
10
The Whole Is Bigger than the Sum of Its Parts: Drug Transport in the Context of Two Membranes with Active Efflux.
Chem Rev. 2021 May 12;121(9):5597-5631. doi: 10.1021/acs.chemrev.0c01137. Epub 2021 Feb 17.

本文引用的文献

1
POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES.
J Gen Physiol. 1943 Sep 20;27(1):37-60. doi: 10.1085/jgp.27.1.37.
2
The effect of sodium ions on the electrical activity of giant axon of the squid.
J Physiol. 1949 Mar 1;108(1):37-77. doi: 10.1113/jphysiol.1949.sp004310.
4
Electrostatic influence on ion transport through the alphaHL channel.
J Membr Biol. 2003 Oct 1;195(3):137-46. doi: 10.1007/s00232-003-0615-1.
5
Molecular basis of bacterial outer membrane permeability revisited.
Microbiol Mol Biol Rev. 2003 Dec;67(4):593-656. doi: 10.1128/MMBR.67.4.593-656.2003.
6
Residue ionization and ion transport through OmpF channels.
Biophys J. 2003 Dec;85(6):3718-29. doi: 10.1016/S0006-3495(03)74788-2.
7
Molecular origin of the cation selectivity in OmpF porin: single channel conductances vs. free energy calculation.
Biophys Chem. 2003 Jul 1;104(3):591-603. doi: 10.1016/s0301-4622(03)00062-0.
8
Solute uptake through general porins.
Front Biosci. 2003 May 1;8:d1055-71. doi: 10.2741/1132.
9
Proteins, channels and crowded ions.
Biophys Chem. 2003;100(1-3):507-17. doi: 10.1016/s0301-4622(02)00302-2.
10
Physical descriptions of experimental selectivity measurements in ion channels.
Eur Biophys J. 2002 Oct;31(6):454-66. doi: 10.1007/s00249-002-0239-x. Epub 2002 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验