Suppr超能文献

用四甲基罗丹明修饰的肌动蛋白形成肌动蛋白丝并使其不稳定。

Formation and destabilization of actin filaments with tetramethylrhodamine-modified actin.

作者信息

Kudryashov Dmitry S, Phillips Martin, Reisler Emil

机构信息

Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California, USA.

出版信息

Biophys J. 2004 Aug;87(2):1136-45. doi: 10.1529/biophysj.104.042242.

Abstract

Actin labeling at Cys(374) with tethramethylrhodamine derivatives (TMR-actin) has been widely used for direct observation of the in vitro filaments growth, branching, and treadmilling, as well as for the in vivo visualization of actin cytoskeleton. The advantage of TMR-actin is that it does not lock actin in filaments (as rhodamine-phalloidin does), possibly allowing for its use in investigating the dynamic assembly behavior of actin polymers. Although it is established that TMR-actin alone is polymerization incompetent, the impact of its copolymerization with unlabeled actin on filament structure and dynamics has not been tested yet. In this study, we show that TMR-actin perturbs the filaments structure when copolymerized with unlabeled actin; the resulting filaments are more fragile and shorter than the control filaments. Due to the increased severing of copolymer filaments, TMR-actin accelerates the polymerization of unlabeled actin in solution also at mole ratios lower than those used in most fluorescence microscopy experiments. The destabilizing and severing effect of TMR-actin is countered by filament stabilizing factors, phalloidin, S1, and tropomyosin. These results point to an analogy between the effects of TMR-actin and severing proteins on F-actin, and imply that TMR-actin may be inappropriate for investigations of actin filaments dynamics.

摘要

用四甲基罗丹明衍生物(TMR-肌动蛋白)对Cys(374)处的肌动蛋白进行标记,已被广泛用于直接观察体外肌动蛋白丝的生长、分支和踏车行为,以及用于体内肌动蛋白细胞骨架的可视化。TMR-肌动蛋白的优点是它不会像罗丹明-鬼笔环肽那样将肌动蛋白锁定在丝中,这可能使其可用于研究肌动蛋白聚合物的动态组装行为。虽然已经确定单独的TMR-肌动蛋白无聚合能力,但其与未标记的肌动蛋白共聚对丝结构和动力学的影响尚未得到测试。在本研究中,我们表明TMR-肌动蛋白与未标记的肌动蛋白共聚时会扰乱丝结构;所产生的丝比对照丝更脆弱且更短。由于共聚丝的切割增加,TMR-肌动蛋白在低于大多数荧光显微镜实验中使用的摩尔比时也会加速溶液中未标记肌动蛋白的聚合。TMR-肌动蛋白的去稳定和切割作用可被丝稳定因子、鬼笔环肽、S1和原肌球蛋白抵消。这些结果表明TMR-肌动蛋白和切割蛋白对F-肌动蛋白的作用之间存在相似性,并暗示TMR-肌动蛋白可能不适用于肌动蛋白丝动力学的研究。

相似文献

1
Formation and destabilization of actin filaments with tetramethylrhodamine-modified actin.
Biophys J. 2004 Aug;87(2):1136-45. doi: 10.1529/biophysj.104.042242.
3
Malaria parasite actin polymerization and filament structure.
J Biol Chem. 2010 Nov 19;285(47):36577-85. doi: 10.1074/jbc.M110.142638. Epub 2010 Sep 7.
4
Analysis of tetramethylrhodamine-labeled actin polymerization and interaction with actin regulatory proteins.
J Biol Chem. 2006 Aug 18;281(33):24036-47. doi: 10.1074/jbc.M602747200. Epub 2006 Jun 5.
5
The interaction of gelsolin with tropomyosin modulates actin dynamics.
FEBS J. 2013 Sep;280(18):4600-11. doi: 10.1111/febs.12431. Epub 2013 Jul 31.
6
Transient kinetic analysis of rhodamine phalloidin binding to actin filaments.
Biochemistry. 1994 Dec 6;33(48):14387-92. doi: 10.1021/bi00252a003.
7
Severing of F-actin by yeast cofilin is pH-independent.
Cell Motil Cytoskeleton. 2006 Sep;63(9):533-42. doi: 10.1002/cm.20142.
9
The real-time monitoring of the thermal unfolding of tetramethylrhodamine-labeled actin.
Biochemistry. 2008 Sep 9;47(36):9688-96. doi: 10.1021/bi800421u. Epub 2008 Aug 15.

引用本文的文献

1
Single-Benzene-Based Clickable Fluorophores for In Vitro and In Vivo Bioimaging.
ChemistrySelect. 2025 Feb 27;10(9). doi: 10.1002/slct.202405738. eCollection 2025 Mar.
2
Ultraviolet Resonant Nanogap Antennas with Rhodium Nanocube Dimers for Enhancing Protein Intrinsic Autofluorescence.
ACS Nano. 2023 Nov 28;17(22):22418-22429. doi: 10.1021/acsnano.3c05008. Epub 2023 Nov 6.
3
Allosteric regulation controls actin-bundling properties of human plastins.
Nat Struct Mol Biol. 2022 Jun;29(6):519-528. doi: 10.1038/s41594-022-00771-1. Epub 2022 May 19.
4
the Understanding of ACD Toxicity with the Discovery of Cyclic Forms of Actin Oligomers.
Int J Mol Sci. 2021 Jan 13;22(2):718. doi: 10.3390/ijms22020718.
6
mDia1 and formins: screw cap of the actin filament.
Biophysics (Nagoya-shi). 2012 May 31;8:95-102. doi: 10.2142/biophysics.8.95. eCollection 2012.
7
Biochemical Activities of the Wiskott-Aldrich Syndrome Homology Region 2 Domains of Sarcomere Length Short (SALS) Protein.
J Biol Chem. 2016 Jan 8;291(2):667-80. doi: 10.1074/jbc.M115.683904. Epub 2015 Nov 17.
9
Disulfide cross-linked antiparallel actin dimer.
Biochemistry. 2013 Feb 12;52(6):1082-8. doi: 10.1021/bi301208a. Epub 2013 Jan 30.
10
Differential effects of caldesmon on the intermediate conformational states of polymerizing actin.
J Biol Chem. 2010 Jan 1;285(1):71-9. doi: 10.1074/jbc.M109.065078. Epub 2009 Nov 4.

本文引用的文献

1
Cofilin (ADF) affects lateral contacts in F-actin.
J Mol Biol. 2004 Mar 12;337(1):93-104. doi: 10.1016/j.jmb.2004.01.014.
2
Expression of GFP-actin leads to failure of nuclear elongation and cytokinesis in Tetrahymena thermophila.
J Eukaryot Microbiol. 2003 Nov-Dec;50(6):403-8. doi: 10.1111/j.1550-7408.2003.tb00261.x.
3
ADF/cofilin use an intrinsic mode of F-actin instability to disrupt actin filaments.
J Cell Biol. 2003 Dec 8;163(5):1057-66. doi: 10.1083/jcb.200308144. Epub 2003 Dec 1.
4
Solution properties of tetramethylrhodamine-modified G-actin.
Biophys J. 2003 Oct;85(4):2466-75. doi: 10.1016/S0006-3495(03)74669-4.
5
On the stiffness of the natural actin filament decorated with alexa fluor tropomyosin.
Biophys Chem. 2003 Jun 1;104(2):469-76. doi: 10.1016/s0301-4622(03)00036-x.
6
Dolastatin 11 connects two long-pitch strands in F-actin to stabilize microfilaments.
J Mol Biol. 2003 Apr 25;328(2):319-24. doi: 10.1016/s0022-2836(03)00306-1.
7
Structural effects of cofilin on longitudinal contacts in F-actin.
J Mol Biol. 2002 Nov 1;323(4):739-50. doi: 10.1016/s0022-2836(02)01008-2.
8
Microscopic analysis of polymerization dynamics with individual actin filaments.
Nat Cell Biol. 2002 Sep;4(9):666-73. doi: 10.1038/ncb841.
9
Visualization and force measurement of branching by Arp2/3 complex and N-WASP in actin filament.
Biochem Biophys Res Commun. 2002 May 24;293(5):1550-5. doi: 10.1016/S0006-291X(02)00421-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验