Suppr超能文献

单分子三色荧光共振能量转移

Single-molecule three-color FRET.

作者信息

Hohng Sungchul, Joo Chirlmin, Ha Taekjip

机构信息

Physics Department, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA.

出版信息

Biophys J. 2004 Aug;87(2):1328-37. doi: 10.1529/biophysj.104.043935.

Abstract

Fluorescence resonance energy transfer (FRET) measured at the single-molecule level can reveal conformational changes of biomolecules and intermolecular interactions in physiologically relevant conditions. Thus far single-molecule FRET has been measured only between two fluorophores. However, for many complex systems, the ability to observe changes in more than one distance is desired and FRET measured between three spectrally distinct fluorophores can provide a more complete picture. We have extended the single-molecule FRET technique to three colors, using the DNA four-way (Holliday) junction as a model system that undergoes two-state conformational fluctuations. By labeling three arms of the junction with Cy3 (donor), Cy5 (acceptor 1), and Cy5.5 (acceptor 2), distance changes between the donor and acceptor 1, and between the donor and acceptor 2, can be measured simultaneously. Thus we are able to show that the acceptor 1 arm moves away from the donor arm at the same time as the acceptor 2 arm approaches the donor arm, and vice versa, marking the first example of observing correlated movements of two different segments of a single molecule. Our data further suggest that Holliday junction does not spend measurable time with any of the helices unstacked, and that the parallel conformations are not populated to a detectable degree.

摘要

在单分子水平上测量的荧光共振能量转移(FRET)能够揭示生物分子在生理相关条件下的构象变化和分子间相互作用。到目前为止,单分子FRET仅在两个荧光团之间进行测量。然而,对于许多复杂系统而言,人们希望能够观察到不止一个距离的变化,而在三个光谱不同的荧光团之间测量的FRET可以提供更完整的信息。我们将单分子FRET技术扩展到了三种颜色,使用DNA四链(霍利迪)连接体作为经历双态构象波动的模型系统。通过用Cy3(供体)、Cy5(受体1)和Cy5.5(受体2)标记连接体的三个臂,可以同时测量供体与受体1之间以及供体与受体2之间的距离变化。因此,我们能够证明受体1臂在受体2臂靠近供体臂的同时远离供体臂,反之亦然,这标志着观察单个分子两个不同片段相关运动的首个实例。我们的数据进一步表明,霍利迪连接体不会在任何螺旋未堆积的状态下停留可测量的时间,并且平行构象的占比未达到可检测的程度。

相似文献

1
Single-molecule three-color FRET.
Biophys J. 2004 Aug;87(2):1328-37. doi: 10.1529/biophysj.104.043935.
2
Monitoring multiple distances within a single molecule using switchable FRET.
Nat Methods. 2010 Oct;7(10):831-6. doi: 10.1038/nmeth.1502. Epub 2010 Sep 5.
4
Single-molecule quantum-dot fluorescence resonance energy transfer.
Chemphyschem. 2005 May;6(5):956-60. doi: 10.1002/cphc.200400557.
6
Single molecule FRET for the study on structural dynamics of biomolecules.
Biosystems. 2007 Apr;88(3):243-50. doi: 10.1016/j.biosystems.2006.09.041. Epub 2006 Nov 9.
8
An optical trap combined with three-color FRET.
J Am Chem Soc. 2013 Dec 11;135(49):18260-3. doi: 10.1021/ja408767p. Epub 2013 Nov 26.
10
Single-Molecule Characterization of Cy3.5 -Cy5.5 Dye Pair for FRET Studies of Nucleic Acids and Nucleosomes.
J Fluoresc. 2023 Mar;33(2):413-421. doi: 10.1007/s10895-022-03093-z. Epub 2022 Nov 26.

引用本文的文献

1
Triple Labeling Resolves a GPCR Intermediate State by Using Three-Color Single Molecule FRET.
J Am Chem Soc. 2025 May 28;147(21):17689-17700. doi: 10.1021/jacs.4c18364. Epub 2025 May 15.
2
Genetically Encoded Fluorescence Barcodes Allow for Single-Cell Analysis via Spectral Flow Cytometry.
ACS Synth Biol. 2025 May 16;14(5):1533-1548. doi: 10.1021/acssynbio.4c00807. Epub 2025 May 6.
4
Genetically-Encoded Fluorescence Barcodes Allow for Single-Cell Analysis via Spectral Flow Cytometry.
bioRxiv. 2025 Mar 28:2024.10.23.619855. doi: 10.1101/2024.10.23.619855.
5
Interferometric excitation fluorescence lifetime imaging microscopy.
Nat Commun. 2024 Sep 13;15(1):8019. doi: 10.1038/s41467-024-52333-2.
6
FRET (Information Maximized FRET) for Multipoint Single-Molecule Structural Analysis.
Nano Lett. 2024 Jul 17;24(28):8487-8494. doi: 10.1021/acs.nanolett.4c00447. Epub 2024 Jul 8.
7
Tools to investigate the cell surface: Proximity as a central concept in glycoRNA biology.
Cell Chem Biol. 2024 Jun 20;31(6):1132-1144. doi: 10.1016/j.chembiol.2024.04.015. Epub 2024 May 20.
8
Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology.
J Microsc. 2025 May;298(2):123-184. doi: 10.1111/jmi.13270. Epub 2024 Feb 15.
9
Folding pathway of a discontinuous two-domain protein.
Nat Commun. 2024 Jan 23;15(1):690. doi: 10.1038/s41467-024-44901-3.

本文引用的文献

2
Structural dynamics and processing of nucleic acids revealed by single-molecule spectroscopy.
Biochemistry. 2004 Apr 13;43(14):4055-63. doi: 10.1021/bi049973s.
3
Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy.
Biophys J. 2004 Apr;86(4):2530-7. doi: 10.1016/S0006-3495(04)74308-8.
4
Triple FRET: a tool for studying long-range molecular interactions.
Chemphyschem. 2003 Jul 14;4(7):745-8. doi: 10.1002/cphc.200200634.
5
Two-step FRET as a structural tool.
J Am Chem Soc. 2003 Jun 18;125(24):7336-43. doi: 10.1021/ja034564p.
6
Structural dynamics of individual Holliday junctions.
Nat Struct Biol. 2003 Feb;10(2):93-7. doi: 10.1038/nsb883.
7
FRET study of a trifluorophore-labeled DNAzyme.
J Am Chem Soc. 2002 Dec 25;124(51):15208-16. doi: 10.1021/ja027647z.
8
Single-molecule fluorescence resonance energy transfer.
Methods. 2001 Sep;25(1):78-86. doi: 10.1006/meth.2001.1217.
9
Dynamics of Fos-Jun-NFAT1 complexes.
Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):4893-8. doi: 10.1073/pnas.091095998.
10
Structures of helical junctions in nucleic acids.
Q Rev Biophys. 2000 May;33(2):109-59. doi: 10.1017/s0033583500003590.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验