Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstr. 5-13, 81377, Munich, Germany.
Nat Commun. 2023 Oct 17;14(1):6564. doi: 10.1038/s41467-023-42272-9.
Single-molecule experiments have changed the way we explore the physical world, yet data analysis remains time-consuming and prone to human bias. Here, we introduce Deep-LASI (Deep-Learning Assisted Single-molecule Imaging analysis), a software suite powered by deep neural networks to rapidly analyze single-, two- and three-color single-molecule data, especially from single-molecule Förster Resonance Energy Transfer (smFRET) experiments. Deep-LASI automatically sorts recorded traces, determines FRET correction factors and classifies the state transitions of dynamic traces all in ~20-100 ms per trajectory. We benchmarked Deep-LASI using ground truth simulations as well as experimental data analyzed manually by an expert user and compared the results with a conventional Hidden Markov Model analysis. We illustrate the capabilities of the technique using a highly tunable L-shaped DNA origami structure and use Deep-LASI to perform titrations, analyze protein conformational dynamics and demonstrate its versatility for analyzing both total internal reflection fluorescence microscopy and confocal smFRET data.
单分子实验改变了我们探索物理世界的方式,但数据分析仍然耗时且容易受到人为偏见的影响。在这里,我们介绍了 Deep-LASI(深度学习辅助单分子成像分析),这是一个由深度神经网络驱动的软件套件,用于快速分析单、双色和三色单分子数据,特别是来自单分子Förster 共振能量转移(smFRET)实验的数据。Deep-LASI 可以自动对记录的轨迹进行分类,确定 FRET 校正因子,并对动态轨迹的状态转换进行分类,每条轨迹的处理时间约为 20-100ms。我们使用真实模拟数据以及经过专家用户手动分析的实验数据对 Deep-LASI 进行了基准测试,并将结果与传统的隐马尔可夫模型分析进行了比较。我们使用高度可调的 L 形 DNA 折纸结构说明了该技术的功能,并使用 Deep-LASI 进行了滴定、分析蛋白质构象动力学,并展示了其用于分析全内反射荧光显微镜和共聚焦 smFRET 数据的多功能性。