Zhang Hu, Williams-Dalson Wellae, Keshavarz-Moore Eli, Shamlou Parviz Ayazi
Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.
Biotechnol Appl Biochem. 2005 Feb;41(Pt 1):1-8. doi: 10.1042/BA20040082.
CFD (computational fluid dynamics) techniques were used to predict mixing and gas-liquid mass transfer in a 250 ml shake flask operating over a range of shaking frequencies between 100 and 300 rev./min, shaking diameters between 20 and 60 mm, and fill volumes between 25 and 100 ml. Interfacial area, a, volumetric mass-transfer coeffcient, kLa, and the power input per unit volume, epsilonv, of the liquid were predicted to be 300<a<800 m2 . m(-3), 10<kLa<100 h(-1) and 40<epsilonv<600 W . m(-3) respectively. These values are significantly different from the reported range for laboratory and pilot-scale bioreactors used in the fermentation of bacterial and fungal micro-organisms (100<a<300 m2 . m(-3), 100<kLa<400 h(-1) and 1000<epsilonv<3000 W . m(-3)). Our analysis showed that, at the highest shaking frequency and amplitude of operation, the specific power input in the shake flask was much lower than in laboratory bioreactors. Bacterial and fungal micro-organisms require dissolved oxygen concentrations typically in the range 50-250 mmol of O2 . h(-1) . litre(-1), corresponding to volumetric mass-transfer coefficients, kLa, in the range of 250-400 h(-1). Poor mixing and dissolved-oxygen limitation in shake flasks may limit their use in process design and media optimization in fermentation. In contrast, mammalian cells have relatively low demand for oxygen and consequently require a lower specific power input, this being typically between 1 and 10 W . m(-3), allowing efficient operation in shake flasks. Experimental data presented as part of the present study showed that mammalian cell growth in shake flasks was essentially independent of the specific power input, the maximum specific cell growth rate being 0.056 h(-1). The corresponding maximum oxygen-uptake rate was 0.74 mmol of O2 . h(-1) . litre(-1) for a viable cell count of 1.3 x 10(6) cells . ml(-1). These values are comparable with reported values for laboratory and pilotscale bioreactors. This analysis suggests that growth of mammalian cells in shake flasks (and hence in laboratory bioreactors) is not limited by the gas-liquid mass-transfer rate. In mammalian cell cultures, the requirement for good mixing is driven by other considerations, including the need for good cell suspension and reduction in heterogeneity, for example, in pH, temperature, nutrient concentration, osmolality and lactate/glucose ratio.
计算流体动力学(CFD)技术被用于预测在一个250毫升摇瓶中的混合以及气液传质情况,该摇瓶在100至300转/分钟的一系列振荡频率、20至60毫米的振荡直径以及25至100毫升的装液体积下运行。预测液相的界面面积a、体积传质系数kLa以及单位体积的功率输入εv分别为300 < a < 800平方米·立方米⁻³、10 < kLa < 100小时⁻¹以及40 < εv < 600瓦·立方米⁻³。这些数值与用于细菌和真菌微生物发酵的实验室及中试规模生物反应器所报道的范围(100 < a < 300平方米·立方米⁻³、100 < kLa < 400小时⁻¹以及1000 < εv < 3000瓦·立方米⁻³)显著不同。我们的分析表明,在最高振荡频率和操作振幅下,摇瓶中的比功率输入远低于实验室生物反应器。细菌和真菌微生物通常需要溶解氧浓度在50 - 250毫摩尔O₂·小时⁻¹·升⁻¹范围内,这对应体积传质系数kLa在250 - 400小时⁻¹范围内。摇瓶中混合不佳和溶解氧限制可能会限制它们在发酵过程设计和培养基优化中的应用。相比之下,哺乳动物细胞对氧气的需求相对较低,因此需要较低的比功率输入,通常在1至10瓦·立方米⁻³之间,这使得在摇瓶中能高效运行。作为本研究一部分呈现的实验数据表明,摇瓶中哺乳动物细胞的生长基本上与比功率输入无关,最大比细胞生长速率为0.056小时⁻¹。对于活细胞计数为1.3×10⁶个细胞·毫升⁻¹的情况,相应的最大氧气摄取速率为0.74毫摩尔O₂·小时⁻¹·升⁻¹。这些数值与实验室及中试规模生物反应器报道的数值相当。该分析表明,摇瓶(以及因此在实验室生物反应器中)中哺乳动物细胞的生长不受气液传质速率的限制。在哺乳动物细胞培养中,良好混合的需求是由其他因素驱动的,包括良好细胞悬浮的需要以及减少异质性,例如在pH、温度、营养物浓度、渗透压以及乳酸/葡萄糖比率方面。