Suppr超能文献

一种用于皮层学习的计算框架。

A computational framework for cortical learning.

作者信息

Suri Roland E

机构信息

3641, Midvale Ave. #205, CA 90034, Los Angeles, USA.

出版信息

Biol Cybern. 2004 Jun;90(6):400-9. doi: 10.1007/s00422-004-0487-1. Epub 2004 Jul 22.

Abstract

Recent physiological findings have revealed that long-term adaptation of the synaptic strengths between cortical pyramidal neurons depends on the temporal order of presynaptic and postsynaptic spikes, which is called spike-timing-dependent plasticity (STDP) or temporally asymmetric Hebbian (TAH) learning. Here I prove by analytical means that a physiologically plausible variant of STDP adapts synaptic strengths such that the presynaptic spikes predict the postsynaptic spikes with minimal error. This prediction error model of STDP implies a mechanism for cortical memory: cortical tissue learns temporal spike patterns if these spike patterns are repeatedly elicited in a set of pyramidal neurons. The trained network finishes these patterns if their beginnings are presented, thereby recalling the memory. Implementations of the proposed algorithms may be useful for applications in voice recognition and computer vision.

摘要

最近的生理学研究结果表明,皮层锥体神经元之间突触强度的长期适应性取决于突触前和突触后尖峰的时间顺序,这被称为尖峰时间依赖可塑性(STDP)或时间不对称赫布(TAH)学习。在这里,我通过分析方法证明,STDP的一种生理上合理的变体能够使突触强度发生适应性变化,从而使突触前尖峰以最小误差预测突触后尖峰。这种STDP的预测误差模型暗示了一种皮层记忆机制:如果一组锥体神经元中反复引发这些尖峰模式,皮层组织就能学习时间尖峰模式。当呈现这些模式的起始部分时,经过训练的网络就能完成这些模式,从而回忆起记忆。所提出算法的实现可能对语音识别和计算机视觉应用有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验