Suppr超能文献

儿茶酚胺代谢:对生理学和医学有影响的当代观点。

Catecholamine metabolism: a contemporary view with implications for physiology and medicine.

作者信息

Eisenhofer Graeme, Kopin Irwin J, Goldstein David S

机构信息

Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Dr., MSC-1620, Bethesda, MD 20892-1620, USA.

出版信息

Pharmacol Rev. 2004 Sep;56(3):331-49. doi: 10.1124/pr.56.3.1.

Abstract

This article provides an update about catecholamine metabolism, with emphasis on correcting common misconceptions relevant to catecholamine systems in health and disease. Importantly, most metabolism of catecholamines takes place within the same cells where the amines are synthesized. This mainly occurs secondary to leakage of catecholamines from vesicular stores into the cytoplasm. These stores exist in a highly dynamic equilibrium, with passive outward leakage counterbalanced by inward active transport controlled by vesicular monoamine transporters. In catecholaminergic neurons, the presence of monoamine oxidase leads to formation of reactive catecholaldehydes. Production of these toxic aldehydes depends on the dynamics of vesicular-axoplasmic monoamine exchange and enzyme-catalyzed conversion to nontoxic acids or alcohols. In sympathetic nerves, the aldehyde produced from norepinephrine is converted to 3,4-dihydroxyphenylglycol, not 3,4-dihydroxymandelic acid. Subsequent extraneuronal O-methylation consequently leads to production of 3-methoxy-4-hydroxyphenylglycol, not vanillylmandelic acid. Vanillylmandelic acid is instead formed in the liver by oxidation of 3-methoxy-4-hydroxyphenylglycol catalyzed by alcohol and aldehyde dehydrogenases. Compared to intraneuronal deamination, extraneuronal O-methylation of norepinephrine and epinephrine to metanephrines represent minor pathways of metabolism. The single largest source of metanephrines is the adrenal medulla. Similarly, pheochromocytoma tumor cells produce large amounts of metanephrines from catecholamines leaking from stores. Thus, these metabolites are particularly useful for detecting pheochromocytomas. The large contribution of intraneuronal deamination to catecholamine turnover, and dependence of this on the vesicular-axoplasmic monoamine exchange process, helps explain how synthesis, release, metabolism, turnover, and stores of catecholamines are regulated in a coordinated fashion during stress and in disease states.

摘要

本文提供了关于儿茶酚胺代谢的最新信息,重点是纠正与健康和疾病中儿茶酚胺系统相关的常见误解。重要的是,儿茶酚胺的大多数代谢发生在胺类合成的同一细胞内。这主要是由于儿茶酚胺从囊泡储存库泄漏到细胞质中所致。这些储存库处于高度动态平衡状态,囊泡单胺转运体控制的内向主动转运与被动外向泄漏相互平衡。在儿茶酚胺能神经元中,单胺氧化酶的存在导致反应性儿茶酚醛的形成。这些有毒醛类的产生取决于囊泡 - 轴浆单胺交换的动态过程以及酶催化转化为无毒酸或醇的过程。在交感神经中,去甲肾上腺素产生的醛被转化为3,4 - 二羟基苯乙二醇,而非3,4 - 二羟基扁桃酸。随后的细胞外O - 甲基化导致产生3 - 甲氧基 - 4 - 羟基苯乙二醇,而非香草扁桃酸。相反,香草扁桃酸是在肝脏中由醇脱氢酶和醛脱氢酶催化3 - 甲氧基 - 4 - 羟基苯乙二醇氧化形成的。与神经元内脱氨基作用相比,去甲肾上腺素和肾上腺素向甲氧基肾上腺素的细胞外O -甲基化是次要的代谢途径。甲氧基肾上腺素的最大单一来源是肾上腺髓质。同样,嗜铬细胞瘤肿瘤细胞从储存库泄漏的儿茶酚胺中产生大量甲氧基肾上腺素。因此,这些代谢产物对于检测嗜铬细胞瘤特别有用。神经元内脱氨基作用对儿茶酚胺周转的巨大贡献以及这一过程对囊泡 - 轴浆单胺交换过程的依赖性,有助于解释在应激和疾病状态下儿茶酚胺的合成、释放、代谢、周转和储存是如何以协调的方式进行调节的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验