Vidal Guifré
Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125, USA.
Phys Rev Lett. 2004 Jul 23;93(4):040502. doi: 10.1103/PhysRevLett.93.040502. Epub 2004 Jul 19.
We present a numerical method to simulate the time evolution, according to a generic Hamiltonian made of local interactions, of quantum spin chains and systems alike. The efficiency of the scheme depends on the amount of entanglement involved in the simulated evolution. Numerical analysis indicates that this method can be used, for instance, to efficiently compute time-dependent properties of low-energy dynamics in sufficiently regular but otherwise arbitrary one-dimensional quantum many-body systems. As by-products, we describe two alternatives to the density matrix renormalization group method.
我们提出了一种数值方法,用于根据由局部相互作用构成的一般哈密顿量,模拟量子自旋链及类似系统的时间演化。该方案的效率取决于模拟演化中所涉及的纠缠量。数值分析表明,例如,此方法可用于有效计算足够规则但其他方面任意的一维量子多体系统中低能动力学的时间相关性质。作为副产品,我们描述了密度矩阵重整化群方法的两种替代方法。