Istituto di Fotonica e Nanotecnologie-Consiglio Nazionale delle Ricerche (IFN-CNR), P.za Leonardo da Vinci, 32, I-20133, Milano, Italy.
Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci, 32, I-20133, Milano, Italy.
Nat Commun. 2017 Nov 17;8(1):1569. doi: 10.1038/s41467-017-01589-y.
The time evolution of quantum many-body systems is one of the most important processes for benchmarking quantum simulators. The most curious feature of such dynamics is the growth of quantum entanglement to an amount proportional to the system size (volume law) even when interactions are local. This phenomenon has great ramifications for fundamental aspects, while its optimisation clearly has an impact on technology (e.g., for on-chip quantum networking). Here we use an integrated photonic chip with a circuit-based approach to simulate the dynamics of a spin chain and maximise the entanglement generation. The resulting entanglement is certified by constructing a second chip, which measures the entanglement between multiple distant pairs of simulated spins, as well as the block entanglement entropy. This is the first photonic simulation and optimisation of the extensive growth of entanglement in a spin chain, and opens up the use of photonic circuits for optimising quantum devices.
量子多体系统的时间演化是基准量子模拟器的最重要过程之一。这种动力学最奇特的特征是量子纠缠的增长达到与系统大小成比例的程度(体积律),即使相互作用是局部的。这种现象对基础方面有很大的影响,而其优化显然对技术有影响(例如,用于片上量子网络)。在这里,我们使用基于电路的集成光子芯片来模拟自旋链的动力学并最大化纠缠的产生。通过构建第二个芯片来验证产生的纠缠,该芯片测量多个模拟自旋之间的纠缠以及块纠缠熵。这是首次在光子学中模拟和优化自旋链中纠缠的广泛增长,并为优化量子器件开辟了使用光子电路的途径。