Wang Hao, Lewis James P, Sankey Otto F
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602-4658, USA.
Phys Rev Lett. 2004 Jul 2;93(1):016401. doi: 10.1103/PhysRevLett.93.016401. Epub 2004 Jun 28.
An important issue regarding DNA electrical conductivity is the electron (hole) transfer rate. Experiments have found that this transfer rate involves quantum mechanical tunneling for short distances and thermally activated hopping over large distances. The electron (or hole) tunneling probability through a molecule depends on the length of molecule L, as e(-beta(E)L), where the tunneling betaE factor is strongly energy dependent. We have calculated betaE in DNA for poly(dA)-poly(dT) and poly(dG)-poly(dC) for the first time using a complex band structure approach. Although the DNA band gap is not exceptionally large, we find that the very large beta value near midgap makes DNA a poor tunneling conductor. The tunneling decay in DNA is more rapid than many other organic molecules, including those with a far wider gap.
关于DNA电导率的一个重要问题是电子(空穴)转移速率。实验发现,这种转移速率在短距离内涉及量子力学隧穿,在长距离上则是热激活跳跃。电子(或空穴)通过分子的隧穿概率取决于分子长度L,其关系为e^(-βE L),其中隧穿βE因子强烈依赖于能量。我们首次使用复杂能带结构方法计算了聚(dA)-聚(dT)和聚(dG)-聚(dC)在DNA中的βE。虽然DNA的带隙并非特别大,但我们发现在带隙中部附近非常大的β值使DNA成为不良的隧穿导体。DNA中的隧穿衰减比许多其他有机分子更快,包括那些带隙宽得多的分子。