Carmo-Fonseca M, Pepperkok R, Carvalho M T, Lamond A I
European Molecular Biology Laboratory, Heidelberg, Germany.
J Cell Biol. 1992 Apr;117(1):1-14. doi: 10.1083/jcb.117.1.1.
We have recently shown that discrete foci are present in the nuclei of mammalian cells in which each of the U1, U2, U4/U6, and U5 snRNPs involved in pre-mRNA splicing, and the non-snRNP-splicing factor U2AF, are concentrated (Carmo-Fonseca, M., D. Tollervey, R. Pepperkok, S. Barabino, A. Merdes, C. Brunner, P. D. Zamore, M. R. Green, E. Hurt, and A. I. Lamond. 1991. EMBO (Eur. Mol. Biol. Organ.) J. 10:195-206; Carmo-Fonseca, M., R. Pepperkok, B. S. Sproat, W. Ansorge, M. S. Swanson, and A. I. Lamond. 1991 EMBO (Eur. Mol. Biol. Organ.) J. 10:1863-1873). Here, we identify these snRNP-rich organelles as coiled bodies. snRNPs no longer concentrate in coiled bodies after cells are treated with the transcription inhibitors alpha-amanitin or actinomycin D. snRNP association with coiled bodies is also disrupted by heat shock. This indicates that the association of snRNPs with coiled bodies may be connected with the metabolism of nascent transcripts. A novel labeling method is described which shows both the RNA and protein components of individual snRNPs colocalizing in situ. Using this procedure all spliceosomal snRNPs are seen distributed in a nonhomogeneous pattern throughout the nucleoplasm, excluding nucleoli. They are most concentrated in coiled bodies, but in addition are present in "speckled" structures which are distinct from coiled bodies and which contain the non-snRNP splicing factor SC-35. U1 snRNP shows a more widespread nucleoplasmic staining, outside of coiled bodies and "speckled" structures, relative to the other snRNPs. The association of snRNPs with "speckles" is disrupted by heat shock but enhanced when cells are treated with alpha-amanitin.
我们最近发现,在哺乳动物细胞核中存在离散的焦点区域,参与前体mRNA剪接的U1、U2、U4/U6和U5小核核糖核蛋白颗粒(snRNP)以及非snRNP剪接因子U2AF都在这些区域聚集(卡尔莫 - 丰塞卡,M.,D. 托勒维,R. 佩珀科克,S. 巴拉比诺,A. 默德斯,C. 布鲁纳,P. D. 扎莫尔,M. R. 格林,E. 赫特,以及A. I. 拉蒙德。1991年。《欧洲分子生物学组织杂志》10:195 - 206;卡尔莫 - 丰塞卡,M.,R. 佩珀科克,B. S. 斯普罗特,W. 安索尔格,M. S. 斯旺森,以及A. I. 拉蒙德。1991年。《欧洲分子生物学组织杂志》10:1863 - 1873)。在此,我们将这些富含snRNP的细胞器鉴定为卷曲小体。在用转录抑制剂α - 鹅膏蕈碱或放线菌素D处理细胞后,snRNP不再聚集在卷曲小体中。热休克也会破坏snRNP与卷曲小体的结合。这表明snRNP与卷曲小体的结合可能与新生转录本的代谢有关。本文描述了一种新的标记方法,该方法显示单个snRNP的RNA和蛋白质成分在原位共定位。使用此方法可以看到所有剪接体snRNP以非均匀模式分布在整个核质中,核仁除外。它们在卷曲小体中最为聚集,但此外还存在于与卷曲小体不同且含有非snRNP剪接因子SC - 35的“斑点状”结构中。相对于其他snRNP,U1 snRNP在卷曲小体和“斑点状”结构之外的核质中显示出更广泛的染色。热休克会破坏snRNP与“斑点”的结合,但在用α - 鹅膏蕈碱处理细胞时会增强这种结合。