Riggins James N, Pratt Derek A, Voehler Markus, Daniels J Scott, Marnett Lawrence J
Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
J Am Chem Soc. 2004 Sep 1;126(34):10571-81. doi: 10.1021/ja040010q.
3-(2'-Deoxy-beta-D-erythro-pentofuranosyl)pyrimido[1,2-alpha]purin-10(3H)-one (M1dG) is the major product of the reaction of deoxyguanosine with malondialdehyde (MDA). M1dG blocks replication by DNA polymerases in vitro and is mutagenic in vivo. M1dG reacts with hydroxide to form the N2-(3-oxo-1-propenyl)deoxyguanosine anion (N2OPdG-). This reaction is pH-dependent and reverses under neutral and acidic conditions to form M1dG. Here we describe the kinetics and mechanism of the ring-closure reaction in both the nucleoside and oligonucleotides. Kinetic analysis of absorbance and fluorescence changes demonstrates that ring-closure is biphasic, leading to the rapid formation of an intermediate that slowly converts to M1dG in a general-acid-catalyzed reaction. The dependence of the rate of the rapid phase on pH reveals the pKa for protonated N2OPdG is 6.9. One-dimensional 1H NMR and DQF-COSY experiments identified two distinct intermediates, N2OPdG-H and 8-hydroxy-6,7-propenodeoxyguanosine (HO-Prene-dG), that are formed upon acidification of N2OPdG-. Characterization of ring-closure in single-stranded and in melted duplex oligonucleotides shows M1dG formation is also acid-catalyzed in single-stranded oligonucleotides and that the denaturation of an oligonucleotide duplex enhances ring-closure. This work details the complexity of ring-closure in the nucleoside and oligonucleotides and provides new insight into the role of duplex DNA in catalyzing ring-opening and ring-closing of M1dG and N2OPdG.
3-(2'-脱氧-β-D-赤藓糖型戊呋喃糖基)嘧啶并[1,2-α]嘌呤-10(3H)-酮(M1dG)是脱氧鸟苷与丙二醛(MDA)反应的主要产物。M1dG在体外可阻断DNA聚合酶的复制,在体内具有致突变性。M1dG与氢氧根反应形成N2-(3-氧代-1-丙烯基)脱氧鸟苷阴离子(N2OPdG-)。该反应依赖于pH值,在中性和酸性条件下会逆转形成M1dG。在此,我们描述了核苷和寡核苷酸中环化反应的动力学和机制。吸光度和荧光变化的动力学分析表明,环化是双相的,导致快速形成一种中间体,该中间体在一般酸催化反应中缓慢转化为M1dG。快速相速率对pH值的依赖性表明,质子化的N2OPdG的pKa为6.9。一维1H NMR和DQF-COSY实验鉴定出两种不同的中间体,即N2OPdG-H和8-羟基-6,7-丙烯基脱氧鸟苷(HO-Prene-dG),它们是在N2OPdG-酸化时形成的。单链和熔解双链寡核苷酸中环化的表征表明,单链寡核苷酸中M1dG的形成也是酸催化的,并且寡核苷酸双链的变性会增强环化。这项工作详细阐述了核苷和寡核苷酸中环化的复杂性,并为双链DNA在催化M1dG和N2OPdG的开环和闭环中的作用提供了新的见解。