Croce Roberta, Morosinotto Tomas, Ihalainen Janne A, Chojnicka Agnieszka, Breton Jacques, Dekker Jan P, van Grondelle Rienk, Bassi Roberto
Istituto di Biofisica, CNR, Trento, c/o ITC via Sommarive 18, Povo, Trento 38100, Italy.
J Biol Chem. 2004 Nov 19;279(47):48543-9. doi: 10.1074/jbc.M408908200. Epub 2004 Aug 24.
Photosystem I of higher plants is characterized by red-shifted spectral forms deriving from chlorophyll chromophores. Each of the four Lhca1 to -4 subunits exhibits a specific fluorescence emission spectrum, peaking at 688, 701, 725, and 733 nm, respectively. Recent analysis revealed the role of chlorophyll-chlorophyll interactions of the red forms in Lhca3 and Lhca4, whereas the basis for the fluorescence emission at 701 nm in Lhca2 is not yet clear. We report a detailed characterization of the Lhca2 subunit using molecular biology, biochemistry, and spectroscopy and show that the 701-nm emission form originates from a broad absorption band at 690 nm. Spectroscopy on recombinant mutant proteins assesses that this band represents the low energy form of an excitonic interaction involving two chlorophyll a molecules bound to sites A5 and B5, the same protein domains previously identified for Lhca3 and Lhca4. The resulting emission is, however, substantially shifted to higher energies. These results are discussed on the basis of the structural information that recently became available from x-ray crystallography (Ben Shem, A., Frolow, F., and Nelson, N. (2003) Nature 426, 630-635). We suggest that, within the Lhca subfamily, spectroscopic properties of chromophores are modulated by the strength of the excitonic coupling between the chromophores A5 and B5, thus yielding fluorescence emission spanning a large wavelength interval. It is concluded that the interchromophore distance rather than the transition energy of the individual chromophores or the orientation of transition vectors represents the critical factor in determining the excitonic coupling in Lhca pigment-protein complexes.
高等植物的光系统I具有源自叶绿素发色团的红移光谱形式。四个Lhca1至-4亚基中的每一个都表现出特定的荧光发射光谱,分别在688、701、725和733nm处达到峰值。最近的分析揭示了Lhca3和Lhca4中红色形式的叶绿素-叶绿素相互作用的作用,而Lhca2中701nm处荧光发射的基础尚不清楚。我们使用分子生物学、生物化学和光谱学报告了Lhca2亚基的详细特征,并表明701nm发射形式源自690nm处的宽吸收带。对重组突变蛋白的光谱分析评估该带代表涉及与位点A5和B5结合的两个叶绿素a分子的激子相互作用的低能形式,这是先前为Lhca3和Lhca4鉴定的相同蛋白质结构域。然而,产生的发射基本上转移到更高的能量。根据最近从X射线晶体学获得的结构信息(Ben Shem,A.,Frolow,F.和Nelson,N.(2003)Nature 426,630-635)讨论了这些结果。我们认为,在Lhca亚科内,发色团的光谱性质受发色团A5和B5之间激子耦合强度的调节,从而产生跨越较大波长区间的荧光发射。得出结论是,发色团间距离而非单个发色团的跃迁能量或跃迁矢量的取向是决定Lhca色素-蛋白质复合物中激子耦合的关键因素。