Suppr超能文献

单个 LHCA 在光系统 I 激发能捕获中的作用。

The role of the individual Lhcas in photosystem I excitation energy trapping.

机构信息

Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.

出版信息

Biophys J. 2011 Aug 3;101(3):745-54. doi: 10.1016/j.bpj.2011.06.045.

Abstract

In this work, we have investigated the role of the individual antenna complexes and of the low-energy forms in excitation energy transfer and trapping in Photosystem I of higher plants. To this aim, a series of Photosystem I (sub)complexes with different antenna size/composition/absorption have been studied by picosecond fluorescence spectroscopy. The data show that Lhca3 and Lhca4, which harbor the most red forms, have similar emission spectra (λ(max) = 715-720 nm) and transfer excitation energy to the core with a relative slow rate of ∼25/ns. Differently, the energy transfer from Lhca1 and Lhca2, the "blue" antenna complexes, occurs about four times faster. In contrast to what is often assumed, it is shown that energy transfer from the Lhca1/4 and the Lhca2/3 dimer to the core occurs on a faster timescale than energy equilibration within these dimers. Furthermore, it is shown that all four monomers contribute almost equally to the transfer to the core and that the red forms slow down the overall trapping rate by about two times. Combining all the data allows the construction of a comprehensive picture of the excitation-energy transfer routes and rates in Photosystem I.

摘要

在这项工作中,我们研究了个体天线复合物和低能量形式在高等植物光系统 I 中的激发能量转移和俘获中的作用。为此,我们通过皮秒荧光光谱研究了一系列具有不同天线大小/组成/吸收的光系统 I(亚)复合物。数据表明,含有最多红色形式的 Lhca3 和 Lhca4 具有相似的发射光谱(λ(max) = 715-720nm),并以相对较慢的速率(~25/ns)将激发能量转移到核心。相比之下,Lhca1 和 Lhca2(“蓝色”天线复合物)的能量转移速度快约四倍。与通常的假设相反,结果表明,Lhca1/4 和 Lhca2/3 二聚体向核心的能量转移发生的时间尺度比这些二聚体内部的能量平衡快。此外,结果表明,所有四个单体对向核心的转移几乎贡献相等,并且红色形式将整体俘获速率减慢了约两倍。综合所有数据,我们可以构建光系统 I 中激发能量转移途径和速率的综合图景。

相似文献

1
The role of the individual Lhcas in photosystem I excitation energy trapping.
Biophys J. 2011 Aug 3;101(3):745-54. doi: 10.1016/j.bpj.2011.06.045.
2
Excitation energy trapping in photosystem I complexes depleted in Lhca1 and Lhca4.
FEBS Lett. 2005 Aug 29;579(21):4787-91. doi: 10.1016/j.febslet.2005.06.091.
3
Singlet and triplet state transitions of carotenoids in the antenna complexes of higher-plant photosystem I.
Biochemistry. 2007 Mar 27;46(12):3846-55. doi: 10.1021/bi602531k. Epub 2007 Feb 28.
4
The role of Lhca complexes in the supramolecular organization of higher plant photosystem I.
J Biol Chem. 2009 Mar 20;284(12):7803-10. doi: 10.1074/jbc.M808395200. Epub 2009 Jan 12.
5
The location of the low-energy states in Lhca1 favors excitation energy transfer to the core in the plant PSI-LHCI supercomplex.
Photosynth Res. 2023 Apr;156(1):59-74. doi: 10.1007/s11120-022-00979-8. Epub 2022 Nov 14.
6
Lhca5 interaction with plant photosystem I.
FEBS Lett. 2006 Nov 27;580(27):6485-8. doi: 10.1016/j.febslet.2006.10.063. Epub 2006 Nov 7.
8
The Lhca antenna complexes of higher plants photosystem I.
Biochim Biophys Acta. 2002 Oct 3;1556(1):29-40. doi: 10.1016/s0005-2728(02)00304-3.
9
Excitation decay pathways of Lhca proteins: a time-resolved fluorescence study.
J Phys Chem B. 2005 Nov 10;109(44):21150-8. doi: 10.1021/jp0519316.
10
Excitation transfer and trapping kinetics in plant photosystem I probed by two-dimensional electronic spectroscopy.
Photosynth Res. 2018 Mar;135(1-3):239-250. doi: 10.1007/s11120-017-0427-2. Epub 2017 Aug 14.

引用本文的文献

1
Greater Than the Sum of the Parts: Revisiting the Enhancement Effect in Photosynthesis Using Simulated Sun- and Shade-Light.
Plant Cell Environ. 2025 Aug;48(8):6102-6117. doi: 10.1111/pce.15557. Epub 2025 May 2.
3
Light quality, oxygenic photosynthesis and more.
Photosynthetica. 2022 Jan 6;60(1):25-28. doi: 10.32615/ps.2021.055. eCollection 2022.
4
Transcriptome and hormone metabolome reveal the mechanism of stem bending in water lily () cut-flowers.
Front Plant Sci. 2023 Sep 8;14:1195389. doi: 10.3389/fpls.2023.1195389. eCollection 2023.
5
Origin of Low-Lying Red States in the Lhca4 Light-Harvesting Complex of Photosystem I.
J Phys Chem Lett. 2023 Sep 21;14(37):8345-8352. doi: 10.1021/acs.jpclett.3c02091. Epub 2023 Sep 13.
6
Biochemical and spectroscopic characterization of PSI-LHCI from the red alga Cyanidium caldarium.
Photosynth Res. 2023 Jun;156(3):315-323. doi: 10.1007/s11120-023-00999-y. Epub 2023 Feb 13.
7
8
The location of the low-energy states in Lhca1 favors excitation energy transfer to the core in the plant PSI-LHCI supercomplex.
Photosynth Res. 2023 Apr;156(1):59-74. doi: 10.1007/s11120-022-00979-8. Epub 2022 Nov 14.
9
Spectral diversity of photosystem I from flowering plants.
Photosynth Res. 2023 Jan;155(1):35-47. doi: 10.1007/s11120-022-00971-2. Epub 2022 Oct 19.

本文引用的文献

2
Excitation-energy transfer dynamics of higher plant photosystem I light-harvesting complexes.
Biophys J. 2011 Mar 2;100(5):1372-80. doi: 10.1016/j.bpj.2011.01.030.
4
Femtosecond primary charge separation in Synechocystis sp. PCC 6803 photosystem I.
Biochim Biophys Acta. 2010 Aug;1797(8):1410-20. doi: 10.1016/j.bbabio.2010.02.026. Epub 2010 Feb 26.
5
Structure determination and improved model of plant photosystem I.
J Biol Chem. 2010 Jan 29;285(5):3478-86. doi: 10.1074/jbc.M109.072645. Epub 2009 Nov 18.
7
The role of Lhca complexes in the supramolecular organization of higher plant photosystem I.
J Biol Chem. 2009 Mar 20;284(12):7803-10. doi: 10.1074/jbc.M808395200. Epub 2009 Jan 12.
8
Picosecond fluorescence of intact and dissolved PSI-LHCI crystals.
Biophys J. 2008 Dec 15;95(12):5851-61. doi: 10.1529/biophysj.108.140467. Epub 2008 Oct 17.
9
Trap-limited charge separation kinetics in higher plant photosystem I complexes.
Biophys J. 2008 May 1;94(9):3601-12. doi: 10.1529/biophysj.107.117101. Epub 2008 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验