Jenner Ronald A
University Museum of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom.
Evol Dev. 2004 Sep-Oct;6(5):372-8. doi: 10.1111/j.1525-142X.2004.04045.x.
Molecular and morphological data sets have yielded conflicting phylogenies for the Metazoa. So far, no general explanation for the existence of this conflict has been suggested. However, I believe that a neglected aspect of metazoan cladistics has introduced a systematic and substantial bias into morphological phylogenetic analyses. Most characters used for metazoan cladistics are coded as binary absence/presence characters. For most of these characters, the absence states are assumed to be uninformative default plesiomorphies, if they are defined at all. This character coding strategy could seriously underestimate the number of informative apomorphic absences or secondary character losses. Because nodes in morphological metazoan phylogenies are typically supported by relatively small numbers of characters each with a potentially strong impact on tree topology, failure to distinguish between primary absence and secondary loss of characters before a cladistic analysis may mislead morphological cladistics. This may falsely suggest conflict with molecular phylogenies, which are not sensitive to this bias. To test the existence of this bias, I compare the phylogenetic placement of a variety of metazoan taxa in molecular and morphological trees. In all instances investigated here, phylogenetic conflict can be resolved by allowing for secondary loss of morphological characters, which were assumed to be primitively absent in cladistic analyses. These findings suggest that we should be cautious in interpreting the results of morphological metazoan cladistic analyses and additionally illustrate the value of a more functional approach to comparative morphology in certain circumstances.
分子数据集和形态学数据集得出了相互矛盾的后生动物系统发育关系。到目前为止,对于这种冲突的存在尚未提出一般性解释。然而,我认为后生动物分支系统学中一个被忽视的方面已给形态学系统发育分析引入了系统性且实质性的偏差。用于后生动物分支系统学的大多数特征被编码为二元的存在/缺失特征。对于这些特征中的大多数,如果对缺失状态进行了定义,它们通常被假定为无信息的默认近祖特征。这种特征编码策略可能会严重低估有信息的衍生缺失或次生特征丢失的数量。由于后生动物形态学系统发育树中的节点通常由相对较少的特征支持,每个特征对树形拓扑结构都可能有潜在的强烈影响,在分支系统分析之前未能区分特征的原始缺失和次生丢失可能会误导形态学分支系统学。这可能会错误地暗示与分子系统发育存在冲突,而分子系统发育对这种偏差不敏感。为了检验这种偏差的存在,我比较了各种后生动物类群在分子树和形态学树中的系统发育位置。在这里研究的所有实例中,通过考虑形态学特征的次生丢失可以解决系统发育冲突,而这些特征在分支系统分析中被假定为原始缺失。这些发现表明,我们在解释后生动物形态学分支系统分析的结果时应谨慎,此外还说明了在某些情况下采用更具功能性的比较形态学方法的价值。