Ardite Esther, Barbera Joan Albert, Roca Josep, Fernández-Checa Jose C
Servei de Pneumologia, Instituto Clinic de Pneumologia y Cirugía Torácica, Barcelona, Spain.
Am J Pathol. 2004 Sep;165(3):719-28. doi: 10.1016/s0002-9440(10)63335-4.
Skeletal muscle differentation is a complex process regulated at multiple levels. This study addressed the effect of glutathione (GSH) depletion on the transition of murine skeletal muscle C2C12 myoblasts into myocytes induced by growth factor inactivation. Cellular GSH levels increased within 24 hours on myogenic stimulation of myoblasts due to enhanced GSH synthetic rate accounted for by stimulated glutamate-L-cysteine ligase (also known as gamma-glutamylcysteine synthetase) activity. In contrast, the synthesis rate of GSH using gamma-glutamylcysteine and glutamate as precursors, which reflects the activity of the GSH synthetase, did not change during differentiation. The stimulation of GSH stores preceded the myogenic differentiation of C2C12 myoblasts monitored by expression of muscle-specific genes, creatine kinase (CK), myosin heavy chain (MyHC), and MyoD. The pattern of DNA binding activity of NF-kappaB and AP-1 in differentiating cells was similar both displaying an activation peak at 24 hours after myogenic stimulation. Depletion of cellular GSH levels 24 hours after stimulation of differentiation abrogated myogenesis as reflected by lower CK activity, MyHC levels, MyoD expression, and myotubes formation, effects that were reversible on GSH replenishment by GSH ethyl ester (GHSEE). Moreover, GSH depletion led to sustained activation of NF-kappaB, while GSHEE prevented it. Furthermore, inhibition of NF-kappaB activation restored myogenesis despite GSH depletion. Thus, GSH contributes to the formation of myotubes from satellite myoblasts by ensuring inactivation of NF-kappaB, and hence maintaining optimal GSH levels may be beneficial in restoring muscle mass in chronic inflammatory disorders.
骨骼肌分化是一个在多个水平上受到调控的复杂过程。本研究探讨了谷胱甘肽(GSH)耗竭对生长因子失活诱导的小鼠骨骼肌C2C12成肌细胞向肌细胞转变的影响。成肌细胞受到成肌刺激后,由于谷氨酸 - L - 半胱氨酸连接酶(也称为γ - 谷氨酰半胱氨酸合成酶)活性增强导致GSH合成速率提高,细胞内GSH水平在24小时内升高。相比之下,以γ - 谷氨酰半胱氨酸和谷氨酸为前体的GSH合成速率(反映GSH合成酶的活性)在分化过程中没有变化。在通过肌肉特异性基因、肌酸激酶(CK)、肌球蛋白重链(MyHC)和MyoD的表达监测到的C2C12成肌细胞的成肌分化之前,GSH储备就已受到刺激。分化细胞中NF - κB和AP - 1的DNA结合活性模式相似,两者在成肌刺激后24小时均显示出一个激活峰值。分化刺激24小时后细胞内GSH水平的耗竭废除了成肌过程,这通过较低的CK活性、MyHC水平、MyoD表达和肌管形成反映出来,这些影响在通过GSH乙酯(GSH EE)补充GSH后是可逆的。此外,GSH耗竭导致NF - κB持续激活,而GSH EE可阻止这种激活。此外,尽管GSH耗竭,但抑制NF - κB激活可恢复成肌过程。因此,GSH通过确保NF - κB失活有助于卫星成肌细胞形成肌管,因此维持最佳GSH水平可能有助于恢复慢性炎症性疾病中的肌肉质量。