Suppr超能文献

症状监测:症状分组对模型准确性和疫情检测的影响。

Syndromic surveillance: the effects of syndrome grouping on model accuracy and outbreak detection.

作者信息

Reis Ben Y, Mandl Kenneth D

机构信息

Children's Hospital Boston, Boston, MA, USA.

出版信息

Ann Emerg Med. 2004 Sep;44(3):235-41. doi: 10.1016/j.annemergmed.2004.03.030.

Abstract

STUDY OBJECTIVE

Data used by syndromic surveillance systems must be grouped into syndromes or prodromes. Previous studies have examined the accuracy of different methods of syndromic grouping. We seek to study the effects of different syndrome grouping methods on model accuracy, a key factor in the outbreak-detection performance of syndromic surveillance systems.

METHODS

Daily emergency department visit rates were analyzed from 2 urban academic tertiary care hospitals for 1,680 consecutive days. During this period, each hospital census totaled approximately 230,000 patient visits. Three methods were used to group the visits into a respiratory-related syndrome category: 1 relying on chief complaint, 1 on diagnostic codes, and 1 on a combination of the two. The different groupings of the syndromic data resulting from these methods were used to build different historical models that were then tested for forecasting accuracy and for sensitivity to detecting simulated outbreaks.

RESULTS

For both hospitals, the data grouped according to chief complaints alone yielded the lowest model accuracy and the lowest detection sensitivity. Using diagnostic codes to group the data yielded better results in accuracy and sensitivity. Combining the 2 grouping methods yielded the best results in accuracy and sensitivity. Temporal smoothing of the data was shown to improve sensitivity in all cases, although to various degrees in the different models.

CONCLUSION

The methods used to group input data into syndromic categories can have substantial effects on the overall performance of syndromic surveillance systems. The results suggest that incorporating diagnostic data into these systems can improve the modeling accuracy and its detection sensitivity. Furthermore, the best results may be achieved by using a combination of methods to group visits into syndromic categories.

摘要

研究目的

症状监测系统所使用的数据必须被归类为综合征或前驱症状。以往的研究已经考察了不同症状分组方法的准确性。我们试图研究不同的综合征分组方法对模型准确性的影响,而模型准确性是症状监测系统爆发检测性能的一个关键因素。

方法

对两家城市学术型三级护理医院连续1680天的每日急诊科就诊率进行了分析。在此期间,每家医院的普查患者就诊总数约为23万例。采用三种方法将就诊病例归类到与呼吸道相关的综合征类别中:一种方法依赖于主诉,一种方法依赖于诊断编码,还有一种方法依赖于两者的结合。这些方法所产生的症状数据的不同分组被用于构建不同的历史模型,然后对这些模型进行预测准确性和检测模拟爆发敏感性的测试。

结果

对于两家医院而言,仅根据主诉进行分组的数据所产生的模型准确性最低,检测敏感性也最低。使用诊断编码对数据进行分组在准确性和敏感性方面产生了更好的结果。将两种分组方法结合起来在准确性和敏感性方面产生了最佳结果。数据的时间平滑处理在所有情况下都显示出能提高敏感性,尽管在不同模型中的提高程度有所不同。

结论

用于将输入数据归类为综合征类别的方法可能会对症状监测系统的整体性能产生重大影响。结果表明,将诊断数据纳入这些系统可以提高建模准确性及其检测敏感性。此外,通过使用多种方法相结合将就诊病例归类为综合征类别可能会取得最佳结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验