Suppr超能文献

科罗拉多州使用兽医实验室检测订单数据进行马综合征监测。

Equine syndromic surveillance in Colorado using veterinary laboratory testing order data.

机构信息

The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States of America.

Center for Epidemiology and Animal Health, US Department of Agriculture, Ft. Collins, Colorado, United States of America.

出版信息

PLoS One. 2019 Mar 1;14(3):e0211335. doi: 10.1371/journal.pone.0211335. eCollection 2019.

Abstract

INTRODUCTION

The Risk Identification Unit (RIU) of the US Dept. of Agriculture's Center for Epidemiology and Animal Health (CEAH) conducts weekly surveillance of national livestock health data and routine coordination with agricultural stakeholders. As part of an initiative to increase the number of species, health issues, and data sources monitored, CEAH epidemiologists are building a surveillance system based on weekly syndromic counts of laboratory test orders in consultation with Colorado State University laboratorians and statistical analysts from the Johns Hopkins University Applied Physics Laboratory. Initial efforts focused on 12 years of equine test records from three state labs. Trial syndrome groups were formed based on RIU experience and published literature. Exploratory analysis, stakeholder input, and laboratory workflow details were needed to modify these groups and filter the corresponding data to eliminate alerting bias. Customized statistical detection methods were sought for effective monitoring based on specialized laboratory information characteristics and on the likely presentation and animal health significance of diseases associated with each syndrome.

METHODS

Data transformation and syndrome formation focused on test battery type, test name, submitter source organization, and specimen type. We analyzed time series of weekly counts of tests included in candidate syndrome groups and conducted an iterative process of data analysis and veterinary consultation for syndrome refinement and record filters. This process produced a rule set in which records were directly classified into syndromes using only test name when possible, and otherwise, the specimen type or related body system was used with test name to determine the syndrome. Test orders associated with government regulatory programs, veterinary teaching hospital testing protocols, or research projects, rather than clinical concerns, were excluded. We constructed a testbed for sets of 1000 statistical trials and applied a stochastic injection process assuming lognormally distributed incubation periods to choose an alerting algorithm with the syndrome-required sensitivity and an alert rate within the specified acceptable range for each resulting syndrome. Alerting performance of the EARS C3 algorithm traditionally used by CEAH was compared to modified C2, CuSUM, and EWMA methods, with and without outlier removal and adjustments for the total weekly number of non-mandatory tests.

RESULTS

The equine syndrome groups adopted for monitoring were abortion/reproductive, diarrhea/GI, necropsy, neurological, respiratory, systemic fungal, and tickborne. Data scales, seasonality, and variance differed widely among the weekly time series. Removal of mandatory and regulatory tests reduced weekly observed counts significantly-by >80% for diarrhea/GI syndrome. The RIU group studied outcomes associated with each syndrome and called for detection of single-week signals for most syndromes with expected false-alert intervals >8 and <52 weeks, 8-week signals for neurological and tickborne monitoring (requiring enhanced sensitivity), 6-week signals for respiratory, and 4-week signals for systemic fungal. From the test-bed trials, recommended methods, settings and thresholds were derived.

CONCLUSIONS

Understanding of laboratory submission sources, laboratory workflow, and of syndrome-related outcomes are crucial to form syndrome groups for routine monitoring without artifactual alerting. Choices of methods, parameters, and thresholds varied by syndrome and depended strongly on veterinary epidemiologist-specified performance requirements.

摘要

简介

美国农业部流行病学和动物健康中心(CEAH)的风险识别部门(RIU)每周对国家牲畜健康数据进行监测,并与农业利益相关者进行例行协调。为了增加监测的物种、健康问题和数据源数量,CEAH 流行病学家正在建立一个监测系统,该系统基于与科罗拉多州立大学实验室人员和约翰霍普金斯大学应用物理实验室的统计分析师协商制定的每周实验室检测订单综合征计数。最初的努力集中在三个州实验室的 12 年马科测试记录上。根据 RIU 的经验和已发表的文献,形成了试验综合征组。需要探索性分析、利益相关者的投入和实验室工作流程细节,以修改这些组并筛选相应的数据,以消除警报偏差。根据特定的实验室信息特征和与每个综合征相关的疾病的可能表现和动物健康意义,寻求了用于有效监测的定制统计检测方法。

方法

数据转换和综合征形成侧重于测试电池类型、测试名称、提交源组织和标本类型。我们分析了候选综合征组中每周测试计数的时间序列,并进行了数据分析和兽医咨询的迭代过程,以完善综合征并筛选记录。该过程产生了一个规则集,其中尽可能仅使用测试名称直接将记录分类为综合征,否则使用测试名称和相关身体系统来确定综合征。排除与政府监管计划、兽医教学医院检测方案或研究项目相关的测试订单,而不是与临床问题相关的测试订单。我们构建了一个 1000 个统计试验的测试床,并应用了一个随机注入过程,假设潜伏期呈对数正态分布,以选择具有综合征所需灵敏度的警报算法,并在每个综合征的指定可接受范围内选择警报率。比较了传统上由 CEAH 使用的 EARS C3 算法与修改后的 C2、CuSUM 和 EWMA 方法,包括有无异常值去除以及对每周非强制性测试总数的调整。

结果

监测采用的马科综合征组为流产/生殖、腹泻/胃肠道、尸检、神经、呼吸、全身性真菌和蜱传。每周时间序列中的数据规模、季节性和方差差异很大。强制性和监管测试的去除大大降低了每周观察到的计数-腹泻/胃肠道综合征减少了>80%。RIU 小组研究了与每个综合征相关的结果,并呼吁对大多数综合征进行单周信号检测,预期的错误警报间隔为 8 至 52 周,神经和蜱传监测为 8 周信号(需要增强灵敏度),呼吸监测为 6 周信号,全身性真菌监测为 4 周信号。从测试床试验中,得出了推荐的方法、设置和阈值。

结论

了解实验室提交来源、实验室工作流程以及与综合征相关的结果对于在没有人为警报的情况下形成常规监测的综合征组至关重要。方法、参数和阈值的选择因综合征而异,并且强烈依赖于兽医流行病学家规定的性能要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8360/6396905/be4c77034809/pone.0211335.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验