Xu Xin, Goddard William A
State Key Laboratory for Physical Chemistry of Solid Surfaces, Center for Theoretical Chemistry, Department of Chemistry, Xiamen University, Xiamen 361005, China.
J Chem Phys. 2004 Sep 1;121(9):4068-82. doi: 10.1063/1.1771632.
Density functional theory (DFT) has become the method of choice for many applications of quantum mechanics to the study of the electronic properties of molecules and solids. Despite the enormous progress in improving the functionals, the current generation is inadequate for many important applications. As part of the quest of finding better functionals, we consider in this paper the Perdew-Burke-Ernzerhof (PBE) functional, which we believe to have the best theoretical foundation, but which leads to unacceptable errors in predicting thermochemical data (heats of formation) of molecular systems [mean absolute deviation (MAD)=16.9 kcal/mol against the extended G2 data set of 148 molecules]. Much improved thermochemistry is obtained with hybrid DFT methods that include part of the Hartree-Fock exchange [thus B3LYP (Becke's three parameter scheme combining Hartree-Fock exchange, Becke gradient corrected exchange functional and Lee-Yang-Parr correlational functional) with MAD=3.1 kcal/mol and PBE0 (Perdew's hybrid scheme using PBE exchange and correlation functionals) with MAD=4.8 kcal/mol]. However we wish to continue the quest for a pure density-based DFT. Thus we optimized the four free parameters (micro, kappa, alpha, and beta) in PBE theory against experimental atomic data and the van der Waals interaction properties of Ne(2), leading to the xPBE extended functional, which significantly outperforms PBE for thermochemical properties MAD reduced to 8.0 kcal/mol while being competitive or better than PBE for predictions of geometric parameters, ionization potentials, electron affinities, and proton affinities and for the description of van der Waals and hydrogen bond interactions. Thus xPBE significantly enlarges the field of applications available for pure DFT. The functional forms thus obtained for the exchange and correlational functionals may be useful for discovering new improved functionals or formalisms.
密度泛函理论(DFT)已成为量子力学在分子和固体电子性质研究中许多应用的首选方法。尽管在改进泛函方面取得了巨大进展,但当前一代泛函仍不足以满足许多重要应用的需求。作为寻找更好泛函的一部分,我们在本文中考虑了佩德韦-伯克-恩泽尔霍夫(PBE)泛函,我们认为它具有最佳的理论基础,但在预测分子体系的热化学数据(生成热)时会导致不可接受的误差[相对于148个分子的扩展G2数据集,平均绝对偏差(MAD)=16.9千卡/摩尔]。使用包含部分哈特里-福克交换的混合DFT方法可以得到显著改进的热化学结果[因此,B3LYP(结合哈特里-福克交换、贝克梯度校正交换泛函和李-杨-帕尔相关泛函的贝克三参数方案)的MAD = 3.1千卡/摩尔,PBE0(使用PBE交换和相关泛函的佩德韦混合方案)的MAD = 4.8千卡/摩尔]。然而,我们希望继续寻找基于纯密度的DFT。因此,我们针对实验原子数据和Ne(2)的范德华相互作用性质优化了PBE理论中的四个自由参数(微观、κ、α和β),得到了xPBE扩展泛函,它在热化学性质方面显著优于PBE,MAD降至了8.0千卡/摩尔,同时在几何参数、电离势、电子亲和势和质子亲和势的预测以及范德华和氢键相互作用的描述方面与PBE相当或更优。因此,xPBE显著扩大了纯DFT的可用应用领域。由此获得的交换和相关泛函的函数形式可能有助于发现新的改进泛函或形式体系。