Suppr超能文献

针对存在失访情况的纵向研究的意向性分析。

Intent-to-treat analysis for longitudinal studies with drop-outs.

作者信息

Little R, Yau L

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor 48109, USA.

出版信息

Biometrics. 1996 Dec;52(4):1324-33.

PMID:8962456
Abstract

We consider intent-to-treat (IT) analysis of clinical trials involving longitudinal data subject to drop-out. Common methods, such as Last Observation Carried Forward imputation or incomplete-data methods based on models that assume random dropout, have serious drawbacks in the IT setting. We propose a method that involves multiple imputation of the missing values following drop-out based on an "as treated" model, using actual dose after drop-out if this is known, or imputed doses that incorporate a variety of plausible alternative assumptions if unknown. The multiply-imputed data sets are then analyzed using IT methods, were subjects are classified by randomization group rather than by the dose actually received. Results from the multiply-imputed data sets are combined using the methods of Rubin (1987, Multiple Imputation for Nonresponse in Surveys). A novel feature of the proposed method is that the models for imputation differ from the model used for the analysis of the filled-in data. The method is applied to data on a clinical trial for Tacrine in the treatment of Alzheimer's disease.

摘要

我们考虑对涉及存在失访情况的纵向数据的临床试验进行意向性分析(IT)。常用方法,如末次观察结转插补法或基于随机失访假设模型的不完全数据方法,在IT分析中存在严重缺陷。我们提出一种方法,该方法基于“实际治疗”模型对失访后的缺失值进行多次插补,如果已知失访后的实际剂量则使用该剂量,若未知则使用纳入各种合理替代假设的插补剂量。然后使用IT方法对多次插补的数据集进行分析,受试者按随机分组而非实际接受的剂量进行分类。多次插补数据集的结果使用鲁宾(1987年,《调查中无应答的多重插补》)的方法进行合并。所提出方法的一个新颖之处在于,插补模型与用于分析填充后数据的模型不同。该方法应用于他克林治疗阿尔茨海默病的一项临床试验数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验