Pingel S, Duszenko M
Physiologisch-Chemisches Institut, Universität Tübingen, Federal Republic of Germany.
Biochem J. 1992 Apr 15;283 ( Pt 2)(Pt 2):479-85. doi: 10.1042/bj2830479.
Variant surface glycoproteins (VSGs) of Trypanosoma brucei contain two distinct glycosylation sites: (1) N-linked glycans within the protein portion of the molecules, and (2) the glycosyl-phosphatidylinositol (GPI) membrane anchor. Since galactose residues show uncommon alpha-glycosidic linkages in the GPI membrane anchor, we were prompted to investigate galactosylation of the GPI anchor. On comparing a trypanosome clone galactosylated exclusively in N-glycans (clone MITat 1.5) with clones galactosylated predominantly in the glypiated membrane anchor (clones MITat 1.4, MITat 1.6 and AnTat 1.8), clone MITat 1.5 showed a 10-fold increased enzyme activity when using a protocol including Triton X-100 to assay UDPgalactose:N-acetylglucosaminyl glycopeptide beta 1,4-galactosyltransferase (EC 2.4.1.38). Only the VSG of clone MITat 1.5 could be radiochemically labelled with UDP[14C]galactose, and galactosylation of N-glycans was confirmed by digestion with peptide-N4-(N-acetylglucosaminyl)asparagine amidase (PNGase F). However, in a modified enzyme assay without detergent, galactosyltransferase activity was increased considerably (15-fold) in clone MITat 1.4. VSG galactosylation of clones MITat 1.4, MITat 1.6 and AnTat 1.8 was readily detected by fluorography of the respective SDS/polyacrylamide gels, suggesting that galactosyltransferase activity modifies the VSG membrane anchor in these clones. In this case, [14C]galactose labelling of immunoprecipitated VSG (clone MITat 1.4) was resistant to the release of N-glycans by PNGase F treatment, and thus revealed galactosylation in vitro of a VSG membrane anchor. Exoglycosidase digestions of VSG MITat 1.4 confirmed the presence of alpha-linked galactose residues. We suggest that these specific alpha-galactosyltransferases are inhibited by the action of detergent, but can be activated in a detergent-free buffer system.
布氏锥虫的变异表面糖蛋白(VSG)含有两个不同的糖基化位点:(1)分子蛋白质部分内的N-连接聚糖,以及(2)糖基磷脂酰肌醇(GPI)膜锚。由于半乳糖残基在GPI膜锚中显示出不常见的α-糖苷键,我们因此着手研究GPI锚的半乳糖基化。将仅在N-聚糖中发生半乳糖基化的锥虫克隆(克隆MITat 1.5)与主要在糖基化膜锚中发生半乳糖基化的克隆(克隆MITat 1.4、MITat 1.6和AnTat 1.8)进行比较时,当使用包含Triton X-100的方案测定UDP-半乳糖:N-乙酰葡糖胺糖肽β1,4-半乳糖基转移酶(EC 2.4.1.38)时,克隆MITat 1.5的酶活性增加了10倍。只有克隆MITat 1.5的VSG能够用UDP[14C]半乳糖进行放射化学标记,并且通过用肽-N4-(N-乙酰葡糖胺基)天冬酰胺酶(PNGase F)消化证实了N-聚糖的半乳糖基化。然而,在没有去污剂的改良酶测定中,克隆MITat 1.4的半乳糖基转移酶活性大幅增加(15倍)。通过对各自的SDS/聚丙烯酰胺凝胶进行荧光显影,很容易检测到克隆MITat 1.4、MITat 1.6和AnTat 1.8的VSG半乳糖基化,这表明半乳糖基转移酶活性修饰了这些克隆中的VSG膜锚。在这种情况下,免疫沉淀的VSG(克隆MITat 1.4)的[14C]半乳糖标记对PNGase F处理释放N-聚糖具有抗性,因此揭示了VSG膜锚在体外的半乳糖基化。对VSG MITat 1.4进行外切糖苷酶消化证实了存在α-连接的半乳糖残基。我们认为这些特定的α-半乳糖基转移酶受到去污剂作用的抑制,但可以在无去污剂的缓冲系统中被激活。