Suppr超能文献

原生生物的分泌途径:空间与功能组织及进化

The secretory pathway of protists: spatial and functional organization and evolution.

作者信息

Becker B, Melkonian M

机构信息

Botanisches Institut, Universität zu Köln, Germany.

出版信息

Microbiol Rev. 1996 Dec;60(4):697-721. doi: 10.1128/mr.60.4.697-721.1996.

Abstract

All cells secrete a diversity of macromolecules to modify their environment or to protect themselves. Eukaryotic cells have evolved a complex secretory pathway consisting of several membrane-bound compartments which contain specific sets of proteins. Experimental work on the secretory pathway has focused mainly on mammalian cell lines or on yeasts. Now, some general principles of the secretory pathway have become clear, and most components of the secretory pathway are conserved between yeast cells and mammalian cells. However, the structure and function of the secretory system in protists have been less extensively studied. In this review, we summarize the current knowledge about the secretory pathway of five different groups of protists: Giardia lamblia, one of the earliest lines of eukaryotic evolution, kinetoplastids, the slime mold Dictyostelium discoideum, and two lineages within the "crown" of eukaryotic cell evolution, the alveolates (ciliates and Plasmodium species) and the green algae. Comparison of these systems with the mammalian and yeast system shows that most elements of the secretory pathway were presumably present in the earliest eukaryotic organisms. However, one element of the secretory pathway shows considerable variation: the presence of a Golgi stack and the number of cisternae within a stack. We suggest that the functional separation of the plasma membrane from the nucleus-endoplasmic reticulum system during evolution required a sorting compartment, which became the Golgi apparatus. Once a Golgi apparatus was established, it was adapted to the various needs of the different organisms.

摘要

所有细胞都会分泌多种大分子来改变其周围环境或保护自身。真核细胞进化出了一条复杂的分泌途径,该途径由几个包含特定蛋白质组的膜结合区室组成。关于分泌途径的实验工作主要集中在哺乳动物细胞系或酵母上。现在,分泌途径的一些一般原则已经明确,并且分泌途径的大多数成分在酵母细胞和哺乳动物细胞之间是保守的。然而,原生生物中分泌系统的结构和功能研究较少。在这篇综述中,我们总结了目前关于五类不同原生生物分泌途径的知识:贾第虫,真核生物进化的最早谱系之一;动质体;黏菌盘基网柄菌;以及真核细胞进化“皇冠”中的两个谱系,即囊泡虫类(纤毛虫和疟原虫物种)和绿藻。将这些系统与哺乳动物和酵母系统进行比较表明,分泌途径的大多数成分可能在最早的真核生物中就已存在。然而,分泌途径的一个成分显示出相当大的差异:高尔基体堆叠的存在以及堆叠中潴泡的数量。我们认为,在进化过程中质膜与细胞核 - 内质网系统的功能分离需要一个分拣区室,它后来成为了高尔基体。一旦高尔基体建立起来,它就适应了不同生物体的各种需求。

相似文献

1
The secretory pathway of protists: spatial and functional organization and evolution.
Microbiol Rev. 1996 Dec;60(4):697-721. doi: 10.1128/mr.60.4.697-721.1996.
4
Evolution and Natural History of Membrane Trafficking in Eukaryotes.
Curr Biol. 2020 May 18;30(10):R553-R564. doi: 10.1016/j.cub.2020.03.068.
5
Plant prevacuolar/endosomal compartments.
Int Rev Cytol. 2006;253:95-129. doi: 10.1016/S0074-7696(06)53003-7.
6
A cisternal maturation mechanism can explain the asymmetry of the Golgi stack.
FEBS Lett. 1997 Sep 8;414(2):177-81. doi: 10.1016/s0014-5793(97)00984-8.
7
Protein and lipid sorting between the endoplasmic reticulum and the Golgi complex.
Semin Cell Dev Biol. 1998 Oct;9(5):493-501. doi: 10.1006/scdb.1998.0256.
8
Vesicles on strings: morphological evidence for processive transport within the Golgi stack.
Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2279-83. doi: 10.1073/pnas.95.5.2279.
10
Morphodynamics of the secretory pathway.
Int Rev Cytol. 2005;242:55-120. doi: 10.1016/S0074-7696(04)42002-6.

引用本文的文献

2
The Golgi complex: a hub of the secretory pathway.
BMB Rep. 2021 May;54(5):246-252. doi: 10.5483/BMBRep.2021.54.5.270.
3
Integrated self-organization of transitional ER and early Golgi compartments.
Bioessays. 2014 Feb;36(2):129-33. doi: 10.1002/bies.201300131. Epub 2013 Nov 18.
4
A three-stage model of Golgi structure and function.
Histochem Cell Biol. 2013 Sep;140(3):239-49. doi: 10.1007/s00418-013-1128-3. Epub 2013 Jul 24.
5
The many routes of Golgi-dependent trafficking.
Histochem Cell Biol. 2013 Sep;140(3):251-60. doi: 10.1007/s00418-013-1124-7. Epub 2013 Jul 12.
6
Actin acting at the Golgi.
Histochem Cell Biol. 2013 Sep;140(3):347-60. doi: 10.1007/s00418-013-1115-8. Epub 2013 Jun 27.
7
Cis-Golgi cisternal assembly and biosynthetic activation occur sequentially in plants and algae.
Traffic. 2013 May;14(5):551-67. doi: 10.1111/tra.12052. Epub 2013 Feb 25.
8
Glycosylation disorders of membrane trafficking.
Glycoconj J. 2013 Jan;30(1):23-31. doi: 10.1007/s10719-012-9389-y. Epub 2012 May 15.
9
Sub-compartmental organization of Golgi-resident N-glycan processing enzymes in plants.
Mol Plant. 2011 Mar;4(2):220-8. doi: 10.1093/mp/ssq082. Epub 2011 Feb 9.
10
Unraveling the Golgi ribbon.
Traffic. 2010 Nov;11(11):1391-400. doi: 10.1111/j.1600-0854.2010.01114.x.

本文引用的文献

2
Secretory transport in Plasmodium.
Parasitol Today. 1993 Mar;9(3):98-102. doi: 10.1016/0169-4758(93)90216-3.
3
Playing tag with Chlamydomonas.
Trends Cell Biol. 1994 Aug;4(8):299-301. doi: 10.1016/0962-8924(94)90222-4.
4
Anterograde transport of algal scales through the Golgi complex is not mediated by vesicles.
Trends Cell Biol. 1995 Aug;5(8):305-7. doi: 10.1016/s0962-8924(00)89047-9.
5
A minimalist view of the secretory pathway in Plasmodium falciparum.
Trends Cell Biol. 1995 Sep;5(9):340-3. doi: 10.1016/s0962-8924(00)89060-1.
6
The bilayer couple hypothesis.
Trends Cell Biol. 1992 Mar;2(3):69-70; discussion 70-1. doi: 10.1016/0962-8924(92)90060-z.
7
Dynamic retention of TGN membrane proteins in Saccharomyces cerevisiae.
Trends Cell Biol. 1993 Dec;3(12):426-32. doi: 10.1016/0962-8924(93)90031-u.
8
Golgi retention signals: do membranes hold the key?
Trends Cell Biol. 1991 Dec;1(6):141-4. doi: 10.1016/0962-8924(91)90001-p.
9
Is plasma membrane lipid composition defined in the exocytic or the endocytic pathway?
Trends Cell Biol. 1994 Oct;4(10):350-3. doi: 10.1016/0962-8924(94)90076-0.
10
Beyond bulk flow.
Trends Cell Biol. 1995 Jan;5(1):16-9. doi: 10.1016/s0962-8924(00)88928-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验