Suppr超能文献

通过实验数据和量子化学计算相结合的方法研究肌红蛋白中化合物II的质子化状态:量子精修。

The protonation status of compound II in myoglobin, studied by a combination of experimental data and quantum chemical calculations: quantum refinement.

作者信息

Nilsson Kristina, Hersleth Hans-Petter, Rod Thomas H, Andersson K Kristoffer, Ryde Ulf

机构信息

Department of Theoretical Chemistry, Lund University, Lund, Sweden.

出版信息

Biophys J. 2004 Nov;87(5):3437-47. doi: 10.1529/biophysj.104.041590. Epub 2004 Aug 31.

Abstract

Treatment of met-myoglobin (FeIII) with H2O2 gives rise to ferryl myoglobin, which is closely related to compound II in peroxidases. Experimental studies have given conflicting results for this species. In particular, crystallographic and extended x-ray absorption fine-structure data have shown either a short (approximately 170 pm) or a longer (approximately 190 pm) Fe-O bond, indicating either a double or a single bond. We here present a combined experimental and theoretical investigation of this species. In particular, we use quantum refinement to re-refine a crystal structure with a long bond, using 12 possible states of the active site. The states differ in the formal oxidation state of the iron ion and in the protonation of the oxygen ligand (O2-, OH-, or H2O) and the distal histidine residue (with a proton on Ndelta1, Nepsilon2, or on both atoms). Quantum refinement is essentially standard crystallographic refinement, where the molecular-mechanics potential, normally used to supplement the experimental data, is replaced by a quantum chemical calculation. Thereby, we obtain an accurate description of the active site in all the different protonation and oxidation states, and we can determine which of the 12 structures fit the experimental data best by comparing the crystallographic R-factors, electron-density maps, strain energies, and deviation from the ideal structure. The results indicate that FeIII OH- and FeIV OH- fit the experimental data almost equally well. These two states are appreciably better than the standard model of compound II, FeIV O2-. Combined with the available spectroscopic data, this indicates that compound II in myoglobin is protonated and is best described as FeIV OH-. It accepts a hydrogen bond from the distal His, which may be protonated at low pH.

摘要

用H2O2处理高铁肌红蛋白(FeIII)会产生高铁酰肌红蛋白,它与过氧化物酶中的化合物II密切相关。针对该物种的实验研究结果相互矛盾。特别是,晶体学和扩展X射线吸收精细结构数据显示铁-氧键要么短(约170皮米)要么长(约190皮米),分别表明是双键或单键。我们在此展示了对该物种的实验与理论相结合的研究。具体而言,我们使用量子精修法,利用活性位点的12种可能状态,对具有长键的晶体结构进行重新精修。这些状态在铁离子的形式氧化态、氧配体(O2-、OH-或H2O)以及远端组氨酸残基(Nδ1、Nε2或两个原子上都有质子)的质子化情况方面存在差异。量子精修本质上是标准的晶体学精修,其中通常用于补充实验数据的分子力学势被量子化学计算所取代。由此,我们获得了所有不同质子化和氧化态下活性位点的准确描述,并且通过比较晶体学R因子、电子密度图、应变能以及与理想结构的偏差,能够确定12种结构中哪一种最符合实验数据。结果表明FeIII OH-和FeIV OH-与实验数据的拟合程度几乎相同。这两种状态明显优于化合物II的标准模型FeIV O2-。结合现有的光谱数据,这表明肌红蛋白中的化合物II是质子化的,最好描述为FeIV OH-。它接受来自远端His的氢键,在低pH值下His可能被质子化。

相似文献

2
Crystallographic and spectroscopic studies of peroxide-derived myoglobin compound II and occurrence of protonated FeIV O.
J Biol Chem. 2007 Aug 10;282(32):23372-86. doi: 10.1074/jbc.M701948200. Epub 2007 Jun 12.
3
Theoretical study of the discrimination between O(2) and CO by myoglobin.
J Inorg Biochem. 2002 Jul 25;91(1):101-15. doi: 10.1016/s0162-0134(02)00426-9.
5
An iron hydroxide moiety in the 1.35 A resolution structure of hydrogen peroxide derived myoglobin compound II at pH 5.2.
J Biol Inorg Chem. 2002 Mar;7(3):299-304. doi: 10.1007/s007750100296. Epub 2001 Oct 11.
8
Crystal structures of myoglobin-ligand complexes at near-atomic resolution.
Biophys J. 1999 Oct;77(4):2153-74. doi: 10.1016/S0006-3495(99)77056-6.
9
Distal Histidine Modulates the Unusual O-Binding of Nitrite to Myoglobin: Evidence from the Quantum Chemical Analysis of EPR Parameters.
Inorg Chem. 2015 Aug 3;54(15):7209-17. doi: 10.1021/acs.inorgchem.5b00557. Epub 2015 Jul 14.

引用本文的文献

1
Correlating Structure with Spectroscopy in Ascorbate Peroxidase Compound II.
J Am Chem Soc. 2024 Apr 10;146(14):9640-9656. doi: 10.1021/jacs.3c13169. Epub 2024 Mar 26.
2
XFEL Crystal Structures of Peroxidase Compound II.
Angew Chem Weinheim Bergstr Ger. 2021 Jun 21;133(26):14699-14706. doi: 10.1002/ange.202103010. Epub 2021 May 19.
3
Peroxidase Activity of Myoglobin Variants Reconstituted with Artificial Cofactors.
Chembiochem. 2022 Sep 16;23(18):e202200197. doi: 10.1002/cbic.202200197. Epub 2022 Jul 28.
4
XFEL Crystal Structures of Peroxidase Compound II.
Angew Chem Int Ed Engl. 2021 Jun 21;60(26):14578-14585. doi: 10.1002/anie.202103010. Epub 2021 May 19.
5
Ascorbate Peroxidase Compound II Is an Iron(IV) Oxo Species.
J Am Chem Soc. 2020 Nov 10. doi: 10.1021/jacs.0c09108.
6
Quantum refinement with multiple conformations: application to the P-cluster in nitrogenase.
Acta Crystallogr D Struct Biol. 2020 Nov 1;76(Pt 11):1145-1156. doi: 10.1107/S2059798320012917. Epub 2020 Oct 16.
7
Does the crystal structure of vanadium nitrogenase contain a reaction intermediate? Evidence from quantum refinement.
J Biol Inorg Chem. 2020 Sep;25(6):847-861. doi: 10.1007/s00775-020-01813-z. Epub 2020 Aug 27.
9
Mechanism of hydrogen peroxide formation by lytic polysaccharide monooxygenase.
Chem Sci. 2018 Oct 19;10(2):576-586. doi: 10.1039/c8sc03980a. eCollection 2019 Jan 14.
10
Solving the scalability issue in quantum-based refinement: Q|R#1.
Acta Crystallogr D Struct Biol. 2017 Dec 1;73(Pt 12):1020-1028. doi: 10.1107/S2059798317016746. Epub 2017 Nov 30.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
3
Structure of myoglobin: A three-dimensional Fourier synthesis at 2 A. resolution.
Nature. 1960 Feb 13;185(4711):422-7. doi: 10.1038/185422a0.
4
Crystallographic refinement by simulated annealing: methods and applications.
Methods Enzymol. 1997;277:243-69. doi: 10.1016/s0076-6879(97)77015-0.
5
Protonation status of metal-bound ligands can be determined by quantum refinement.
J Inorg Biochem. 2004 Sep;98(9):1539-46. doi: 10.1016/j.jinorgbio.2004.06.006.
6
Assessment of phase accuracy by cross validation: the free R value. Methods and applications.
Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):24-36. doi: 10.1107/S0907444992007352.
7
Oxoiron(IV) in chloroperoxidase compound II is basic: implications for P450 chemistry.
Science. 2004 Jun 11;304(5677):1653-6. doi: 10.1126/science.1096897.
8
Peroxide-utilizing biocatalysts: structural and functional diversity of heme-containing enzymes.
Curr Opin Chem Biol. 2004 Apr;8(2):127-32. doi: 10.1016/j.cbpa.2004.01.001.
9
Effect of drying upon the absorption spectra of haemoglobin and its derivatives.
Nature. 1952 Jul 26;170(4317):161-2. doi: 10.1038/170161a0.
10
On the role of the axial ligand in heme proteins: a theoretical study.
J Biol Inorg Chem. 2004 Mar;9(2):203-23. doi: 10.1007/s00775-003-0515-y. Epub 2004 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验