Nilsson Kristina, Hersleth Hans-Petter, Rod Thomas H, Andersson K Kristoffer, Ryde Ulf
Department of Theoretical Chemistry, Lund University, Lund, Sweden.
Biophys J. 2004 Nov;87(5):3437-47. doi: 10.1529/biophysj.104.041590. Epub 2004 Aug 31.
Treatment of met-myoglobin (FeIII) with H2O2 gives rise to ferryl myoglobin, which is closely related to compound II in peroxidases. Experimental studies have given conflicting results for this species. In particular, crystallographic and extended x-ray absorption fine-structure data have shown either a short (approximately 170 pm) or a longer (approximately 190 pm) Fe-O bond, indicating either a double or a single bond. We here present a combined experimental and theoretical investigation of this species. In particular, we use quantum refinement to re-refine a crystal structure with a long bond, using 12 possible states of the active site. The states differ in the formal oxidation state of the iron ion and in the protonation of the oxygen ligand (O2-, OH-, or H2O) and the distal histidine residue (with a proton on Ndelta1, Nepsilon2, or on both atoms). Quantum refinement is essentially standard crystallographic refinement, where the molecular-mechanics potential, normally used to supplement the experimental data, is replaced by a quantum chemical calculation. Thereby, we obtain an accurate description of the active site in all the different protonation and oxidation states, and we can determine which of the 12 structures fit the experimental data best by comparing the crystallographic R-factors, electron-density maps, strain energies, and deviation from the ideal structure. The results indicate that FeIII OH- and FeIV OH- fit the experimental data almost equally well. These two states are appreciably better than the standard model of compound II, FeIV O2-. Combined with the available spectroscopic data, this indicates that compound II in myoglobin is protonated and is best described as FeIV OH-. It accepts a hydrogen bond from the distal His, which may be protonated at low pH.
用H2O2处理高铁肌红蛋白(FeIII)会产生高铁酰肌红蛋白,它与过氧化物酶中的化合物II密切相关。针对该物种的实验研究结果相互矛盾。特别是,晶体学和扩展X射线吸收精细结构数据显示铁-氧键要么短(约170皮米)要么长(约190皮米),分别表明是双键或单键。我们在此展示了对该物种的实验与理论相结合的研究。具体而言,我们使用量子精修法,利用活性位点的12种可能状态,对具有长键的晶体结构进行重新精修。这些状态在铁离子的形式氧化态、氧配体(O2-、OH-或H2O)以及远端组氨酸残基(Nδ1、Nε2或两个原子上都有质子)的质子化情况方面存在差异。量子精修本质上是标准的晶体学精修,其中通常用于补充实验数据的分子力学势被量子化学计算所取代。由此,我们获得了所有不同质子化和氧化态下活性位点的准确描述,并且通过比较晶体学R因子、电子密度图、应变能以及与理想结构的偏差,能够确定12种结构中哪一种最符合实验数据。结果表明FeIII OH-和FeIV OH-与实验数据的拟合程度几乎相同。这两种状态明显优于化合物II的标准模型FeIV O2-。结合现有的光谱数据,这表明肌红蛋白中的化合物II是质子化的,最好描述为FeIV OH-。它接受来自远端His的氢键,在低pH值下His可能被质子化。