Garcia-Serres Ricardo, Davydov Roman M, Matsui Toshitaka, Ikeda-Saito Masao, Hoffman Brian M, Huynh Boi Hanh
Department of Physics, Emory University, Atlanta, Georgia 30322, USA.
J Am Chem Soc. 2007 Feb 7;129(5):1402-12. doi: 10.1021/ja067209i.
Activation of O(2) by heme-containing monooxygenases generally commences with the common initial steps of reduction to the ferrous heme and binding of O(2) followed by a one-electron reduction of the O(2)-bound heme. Subsequent steps that generate reactive oxygen intermediates diverge and reflect the effects of protein control on the reaction pathway. In this study, Mössbauer and EPR spectroscopies were used to characterize the electronic states and reaction pathways of reactive oxygen intermediates generated by 77 K radiolytic cryoreduction and subsequent annealing of oxy-heme oxygenase (HO) and oxy-myoglobin (Mb). The results confirm that one-electron reduction of (Fe(II)-O(2))HO is accompanied by protonation of the bound O(2) to generate a low-spin (Fe(III)-O(2)H(-))HO that undergoes self-hydroxylation to form the alpha-meso-hydroxyhemin-HO product. In contrast, one-electron reduction of (Fe(II)-O(2))Mb yields a low-spin (Fe(III)-O(2)(2-))Mb. Protonation of this intermediate generates (Fe(III)-O(2)H(-))Mb, which then decays to a ferryl complex, (Fe(IV)=O(2-))Mb, that exhibits magnetic properties characteristic of the compound II species generated in the reactions of peroxide with heme peroxidases and with Mb. Generation of reactive high-valent states with ferryl species via hydroperoxo intermediates is believed to be the key oxygen-activation steps involved in the catalytic cycles of P450-type monooxygenases. The Mössbauer data presented here provide direct spectroscopic evidence supporting the idea that ferric-hydroperoxo hemes are indeed the precursors of the reactive ferryl intermediates. The fact that a ferryl intermediate does not accumulate in HO underscores the determining role played by protein structure in controlling the reactivity of reaction intermediates.
含血红素的单加氧酶对O₂的激活通常始于将血红素还原为亚铁血红素并结合O₂这一常见的初始步骤,随后是对与O₂结合的血红素进行单电子还原。生成活性氧中间体的后续步骤则有所不同,反映了蛋白质控制对反应途径的影响。在本研究中,利用穆斯堡尔谱和电子顺磁共振光谱来表征由77K辐射裂解低温还原以及随后对氧合血红素加氧酶(HO)和氧合肌红蛋白(Mb)进行退火处理所产生的活性氧中间体的电子态和反应途径。结果证实,(Fe(II)-O₂)HO的单电子还原伴随着结合的O₂质子化,生成低自旋的(Fe(III)-O₂H⁻)HO,其会进行自羟基化反应形成α-中羟基血红素-HO产物。相比之下,(Fe(II)-O₂)Mb的单电子还原产生低自旋的(Fe(III)-O₂²⁻)Mb。该中间体质子化生成(Fe(III)-O₂H⁻)Mb,然后分解为高铁络合物(Fe(IV)=O²⁻)Mb,其表现出与过氧化物与血红素过氧化物酶以及Mb反应中生成的化合物II物种特征相符的磁性。通过氢过氧中间体生成具有高铁物种的活性高价态被认为是P450型单加氧酶催化循环中关键的氧激活步骤。此处呈现的穆斯堡尔数据提供了直接的光谱证据,支持了铁氢过氧血红素确实是活性高铁中间体前体这一观点。高铁中间体在HO中不积累这一事实突出了蛋白质结构在控制反应中间体反应性方面所起的决定性作用。