Suppr超能文献

迈向高维生物学统计方法合理的认识论基础。

Towards sound epistemological foundations of statistical methods for high-dimensional biology.

作者信息

Mehta Tapan, Tanik Murat, Allison David B

机构信息

Department of Biostatistics, Section on Statistical Genetics, Ryals Public Health Building, Suite 327, University of Alabama at Birmingham, 1665 University Boulevard, Birmingham, Alabama 35294, USA.

出版信息

Nat Genet. 2004 Sep;36(9):943-7. doi: 10.1038/ng1422.

Abstract

A sound epistemological foundation for biological inquiry comes, in part, from application of valid statistical procedures. This tenet is widely appreciated by scientists studying the new realm of high-dimensional biology, or 'omic' research, which involves multiplicity at unprecedented scales. Many papers aimed at the high-dimensional biology community describe the development or application of statistical techniques. The validity of many of these is questionable, and a shared understanding about the epistemological foundations of the statistical methods themselves seems to be lacking. Here we offer a framework in which the epistemological foundation of proposed statistical methods can be evaluated.

摘要

生物学探究的坚实认识论基础部分源于有效统计程序的应用。这一原则被研究高维生物学新领域或“组学”研究的科学家广泛认可,该领域涉及前所未有的规模的多样性。许多针对高维生物学领域的论文描述了统计技术的发展或应用。其中许多技术的有效性值得怀疑,而且似乎缺乏对统计方法本身认识论基础的共同理解。在此,我们提供一个框架,可用于评估所提出的统计方法的认识论基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验