Schuermann Jonathan P, Henzl Michael T, Deutscher Susan L, Tanner John J
Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA.
Proteins. 2004 Nov 1;57(2):269-78. doi: 10.1002/prot.20200.
Antibodies that recognize DNA (anti-DNA) are part of the autoimmune response underlying systemic lupus erythematosus. To better understand molecular recognition by anti-DNA antibodies, crystallographic studies have been performed using an anti-ssDNA antigen-binding fragment (Fab) known as DNA-1. The previously determined structure of a DNA-1/dT5 complex revealed that thymine bases insert into a narrow groove, and that ligand recognition primarily involves the bases of DNA. We now report the 1.75-A resolution structure of DNA-1 complexed with the biological buffer HEPES (4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid). All three light chain complementarity-determining regions (CDRs) and HCDR3 contribute to binding. The HEPES sulfonate hydrogen bonds to His L91, Asn L50, and to the backbone of Tyr H100 and Tyr H100A. The Tyr side-chains of L32, L92, H100, and H100A form nonpolar contacts with the HEPES ethylene and piperazine groups. Comparison to the DNA-1/dT5 structure reveals that the dual recognition of dT5 and HEPES requires a 13-A movement of HCDR3. This dramatic structural change converts the combining site from a narrow groove, appropriate for the edge-on insertion of thymine bases, to one sufficiently wide to accommodate the HEPES sulfonate and piperazine. Isothermal titration calorimetry verified the association of HEPES with DNA-1 under conditions similar those used for crystallization (2 M ammonium sulfate). Interestingly, the presence of 2 M ammonium sulfate increases the affinities of DNA-1 for both HEPES and dT5, suggesting that non-polar Fab-ligand interactions are important for molecular recognition in highly ionic solvent conditions. The structural and thermodynamic data suggest a molecular mimicry mechanism based on structural plasticity and hydrophobic interactions.
识别DNA的抗体(抗DNA抗体)是系统性红斑狼疮自身免疫反应的一部分。为了更好地理解抗DNA抗体的分子识别机制,人们利用一种名为DNA-1的抗单链DNA抗原结合片段(Fab)进行了晶体学研究。先前确定的DNA-1/dT5复合物结构表明,胸腺嘧啶碱基插入一个狭窄的凹槽,且配体识别主要涉及DNA的碱基。我们现在报告DNA-1与生物缓冲液HEPES(4-(2-羟乙基)哌嗪-1-乙磺酸)复合的1.75埃分辨率结构。所有三个轻链互补决定区(CDR)和重链互补决定区3(HCDR3)都参与结合。HEPES磺酸根与His L91、Asn L50以及Tyr H100和Tyr H100A的主链形成氢键。L32、L92、H100和H100A的Tyr侧链与HEPES的乙烯基和哌嗪基团形成非极性接触。与DNA-1/dT5结构的比较表明,对dT5和HEPES的双重识别需要HCDR3发生13埃的移动。这种显著的结构变化将结合位点从适合胸腺嘧啶碱基边缘插入的狭窄凹槽转变为足以容纳HEPES磺酸根和哌嗪的宽阔位点。等温滴定量热法验证了在与结晶所用条件相似(2 M硫酸铵)的情况下HEPES与DNA-1的结合。有趣的是,2 M硫酸铵的存在增加了DNA-1对HEPES和dT5的亲和力,这表明在高离子强度溶剂条件下,非极性的Fab-配体相互作用对分子识别很重要。结构和热力学数据表明了一种基于结构可塑性和疏水相互作用的分子模拟机制。