Suppr超能文献

蛋白质中离子对几何结构与静电强度之间的关系。

Relationship between ion pair geometries and electrostatic strengths in proteins.

作者信息

Kumar Sandeep, Nussinov Ruth

机构信息

Laboratory of Experimental and Computational Biology, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, Maryland 21702 USA.

出版信息

Biophys J. 2002 Sep;83(3):1595-612. doi: 10.1016/S0006-3495(02)73929-5.

Abstract

The electrostatic free energy contribution of an ion pair in a protein depends on two factors, geometrical orientation of the side-chain charged groups with respect to each other and the structural context of the ion pair in the protein. Conformers in NMR ensembles enable studies of the relationship between geometry and electrostatic strengths of ion pairs, because the protein structural contexts are highly similar across different conformers. We have studied this relationship using a dataset of 22 unique ion pairs in 14 NMR conformer ensembles for 11 nonhomologous proteins. In different NMR conformers, the ion pairs are classified as salt bridges, nitrogen-oxygen (N-O) bridges and longer-range ion pairs on the basis of geometrical criteria. In salt bridges, centroids of the side-chain charged groups and at least a pair of side-chain nitrogen and oxygen atoms of the ion-pairing residues are within a 4 A distance. In N-O bridges, at least a pair of the side-chain nitrogen and oxygen atoms of the ion-pairing residues are within 4 A distance, but the distance between the side-chain charged group centroids is greater than 4 A. In the longer-range ion pairs, the side-chain charged group centroids as well as the side-chain nitrogen and oxygen atoms are more than 4 A apart. Continuum electrostatic calculations indicate that most of the ion pairs have stabilizing electrostatic contributions when their side-chain charged group centroids are within 5 A distance. Hence, most (approximately 92%) of the salt bridges and a majority (68%) of the N-O bridges are stabilizing. Most (approximately 89%) of the destabilizing ion pairs are the longer-range ion pairs. In the NMR conformer ensembles, the electrostatic interaction between side-chain charged groups of the ion-pairing residues is the strongest for salt bridges, considerably weaker for N-O bridges, and the weakest for longer-range ion pairs. These results suggest empirical rules for stabilizing electrostatic interactions in proteins.

摘要

蛋白质中离子对的静电自由能贡献取决于两个因素,即侧链带电基团彼此之间的几何取向以及蛋白质中离子对的结构环境。核磁共振(NMR)系综中的构象异构体有助于研究离子对的几何结构与静电强度之间的关系,因为不同构象异构体的蛋白质结构环境高度相似。我们使用了11种非同源蛋白质的14个NMR构象异构体系综中的22个独特离子对数据集来研究这种关系。在不同的NMR构象异构体中,根据几何标准将离子对分为盐桥、氮 - 氧(N - O)桥和长程离子对。在盐桥中,侧链带电基团的质心以及离子对残基的至少一对侧链氮原子和氧原子之间的距离在4埃以内。在N - O桥中,离子对残基的至少一对侧链氮原子和氧原子之间的距离在4埃以内,但侧链带电基团质心之间的距离大于4埃。在长程离子对中,侧链带电基团质心以及侧链氮原子和氧原子之间的距离超过4埃。连续介质静电计算表明,当大多数离子对的侧链带电基团质心距离在5埃以内时,它们具有稳定的静电贡献。因此,大多数(约92%)的盐桥和大多数(68%)的N - O桥是稳定的。大多数(约89%)的不稳定离子对是长程离子对。在NMR构象异构体系综中,离子对残基侧链带电基团之间的静电相互作用对于盐桥最强,对于N - O桥相当弱,对于长程离子对最弱。这些结果表明了蛋白质中稳定静电相互作用的经验规则。

相似文献

1
Relationship between ion pair geometries and electrostatic strengths in proteins.
Biophys J. 2002 Sep;83(3):1595-612. doi: 10.1016/S0006-3495(02)73929-5.
2
Fluctuations in ion pairs and their stabilities in proteins.
Proteins. 2001 Jun 1;43(4):433-54. doi: 10.1002/prot.1056.
5
Salt bridge stability in monomeric proteins.
J Mol Biol. 1999 Nov 12;293(5):1241-55. doi: 10.1006/jmbi.1999.3218.
6
Close-range electrostatic interactions in proteins.
Chembiochem. 2002 Jul 2;3(7):604-17. doi: 10.1002/1439-7633(20020703)3:7<604::AID-CBIC604>3.0.CO;2-X.
8
Do salt bridges stabilize proteins? A continuum electrostatic analysis.
Protein Sci. 1994 Feb;3(2):211-26. doi: 10.1002/pro.5560030206.
9
Significant role of electrostatic interactions for stabilization of protein assemblies.
Adv Biophys. 1997;34:41-54. doi: 10.1016/s0065-227x(97)89630-x.
10
Dynamic Equilibria of Short-Range Electrostatic Interactions at Molecular Interfaces of Protein-DNA Complexes.
J Phys Chem Lett. 2015 Jul 16;6(14):2733-7. doi: 10.1021/acs.jpclett.5b01134.

引用本文的文献

2
Determinants of chemoselectivity in ubiquitination by the J2 family of ubiquitin-conjugating enzymes.
EMBO J. 2024 Dec;43(24):6705-6739. doi: 10.1038/s44318-024-00301-3. Epub 2024 Nov 12.
4
Physicochemical differences between camelid single-domain antibodies and mammalian antibodies.
Turk J Biol. 2023 Dec 7;47(6):423-436. doi: 10.55730/1300-0152.2676. eCollection 2023.
5
An alpha-helical lid guides the target DNA toward catalysis in CRISPR-Cas12a.
Nat Commun. 2024 Feb 17;15(1):1473. doi: 10.1038/s41467-024-45762-6.
7
Modulation of the I channel by PIP requires two binding sites per monomer.
BBA Adv. 2023 Jan 7;3:100073. doi: 10.1016/j.bbadva.2023.100073. eCollection 2023.
10
Structural Analysis and Construction of a Thermostable Antifungal Chitinase.
Appl Environ Microbiol. 2022 Jun 28;88(12):e0065222. doi: 10.1128/aem.00652-22. Epub 2022 Jun 2.

本文引用的文献

1
Thermodynamic differences among homologous thermophilic and mesophilic proteins.
Biochemistry. 2001 Nov 27;40(47):14152-65. doi: 10.1021/bi0106383.
2
How do thermophilic proteins deal with heat?
Cell Mol Life Sci. 2001 Aug;58(9):1216-33. doi: 10.1007/PL00000935.
4
Fluctuations in ion pairs and their stabilities in proteins.
Proteins. 2001 Jun 1;43(4):433-54. doi: 10.1002/prot.1056.
5
Thermophilic adaptation of proteins.
Crit Rev Biochem Mol Biol. 2001;36(1):39-106. doi: 10.1080/20014091074174.
7
Factors enhancing protein thermostability.
Protein Eng. 2000 Mar;13(3):179-91. doi: 10.1093/protein/13.3.179.
8
One nanosecond molecular dynamics simulation of the N-terminal domain of the lambda repressor protein.
Biopolymers. 2000 Jun;53(7):596-605. doi: 10.1002/(SICI)1097-0282(200006)53:7<596::AID-BIP6>3.0.CO;2-U.
9
Electrostatic aspects of protein-protein interactions.
Curr Opin Struct Biol. 2000 Apr;10(2):153-9. doi: 10.1016/s0959-440x(00)00065-8.
10
Electrostatic strengths of salt bridges in thermophilic and mesophilic glutamate dehydrogenase monomers.
Proteins. 2000 Mar 1;38(4):368-83. doi: 10.1002/(sici)1097-0134(20000301)38:4<368::aid-prot3>3.0.co;2-r.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验