Kumar Sandeep, Nussinov Ruth
Laboratory of Experimental and Computational Biology, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, Maryland 21702 USA.
Biophys J. 2002 Sep;83(3):1595-612. doi: 10.1016/S0006-3495(02)73929-5.
The electrostatic free energy contribution of an ion pair in a protein depends on two factors, geometrical orientation of the side-chain charged groups with respect to each other and the structural context of the ion pair in the protein. Conformers in NMR ensembles enable studies of the relationship between geometry and electrostatic strengths of ion pairs, because the protein structural contexts are highly similar across different conformers. We have studied this relationship using a dataset of 22 unique ion pairs in 14 NMR conformer ensembles for 11 nonhomologous proteins. In different NMR conformers, the ion pairs are classified as salt bridges, nitrogen-oxygen (N-O) bridges and longer-range ion pairs on the basis of geometrical criteria. In salt bridges, centroids of the side-chain charged groups and at least a pair of side-chain nitrogen and oxygen atoms of the ion-pairing residues are within a 4 A distance. In N-O bridges, at least a pair of the side-chain nitrogen and oxygen atoms of the ion-pairing residues are within 4 A distance, but the distance between the side-chain charged group centroids is greater than 4 A. In the longer-range ion pairs, the side-chain charged group centroids as well as the side-chain nitrogen and oxygen atoms are more than 4 A apart. Continuum electrostatic calculations indicate that most of the ion pairs have stabilizing electrostatic contributions when their side-chain charged group centroids are within 5 A distance. Hence, most (approximately 92%) of the salt bridges and a majority (68%) of the N-O bridges are stabilizing. Most (approximately 89%) of the destabilizing ion pairs are the longer-range ion pairs. In the NMR conformer ensembles, the electrostatic interaction between side-chain charged groups of the ion-pairing residues is the strongest for salt bridges, considerably weaker for N-O bridges, and the weakest for longer-range ion pairs. These results suggest empirical rules for stabilizing electrostatic interactions in proteins.
蛋白质中离子对的静电自由能贡献取决于两个因素,即侧链带电基团彼此之间的几何取向以及蛋白质中离子对的结构环境。核磁共振(NMR)系综中的构象异构体有助于研究离子对的几何结构与静电强度之间的关系,因为不同构象异构体的蛋白质结构环境高度相似。我们使用了11种非同源蛋白质的14个NMR构象异构体系综中的22个独特离子对数据集来研究这种关系。在不同的NMR构象异构体中,根据几何标准将离子对分为盐桥、氮 - 氧(N - O)桥和长程离子对。在盐桥中,侧链带电基团的质心以及离子对残基的至少一对侧链氮原子和氧原子之间的距离在4埃以内。在N - O桥中,离子对残基的至少一对侧链氮原子和氧原子之间的距离在4埃以内,但侧链带电基团质心之间的距离大于4埃。在长程离子对中,侧链带电基团质心以及侧链氮原子和氧原子之间的距离超过4埃。连续介质静电计算表明,当大多数离子对的侧链带电基团质心距离在5埃以内时,它们具有稳定的静电贡献。因此,大多数(约92%)的盐桥和大多数(68%)的N - O桥是稳定的。大多数(约89%)的不稳定离子对是长程离子对。在NMR构象异构体系综中,离子对残基侧链带电基团之间的静电相互作用对于盐桥最强,对于N - O桥相当弱,对于长程离子对最弱。这些结果表明了蛋白质中稳定静电相互作用的经验规则。