Suppr超能文献

相似性、识别与分类:对阿什比和李(1991年)的评论

Similarity, identification, and categorization: comment on Ashby and Lee (1991).

作者信息

Nosofsky R M, Smith J E

机构信息

Department of Psychology, Indiana University, Bloomington 47405.

出版信息

J Exp Psychol Gen. 1992 Jun;121(2):237-45. doi: 10.1037//0096-3445.121.2.237.

Abstract

Ashby and Lee (1991) tested various models derived from the general recognition theory (GRT; Ashby & Perrin, 1988; Ashby & Townsend, 1986) on their ability to predict and interrelate similarity, categorization, and identification performance. This commentary (a) argues that contrary to Ashby and Lee's suggestion, the likelihood-based GRT cannot generally predict categorization from identification without incorporating selective attention, (b) argues that the categorization rule in the likelihood-based GRT is extremely close in spirit to Nosofsky's (1986) exemplar-based similarity model, (c) reports new model-based analyses that call into question Ashby and Lee's interpretation of their identification-confusion data, (d) raises questions about the identification and similarity models tested by Ashby and Lee, and (e) criticizes Ashby and Lee's methods of fitting and evaluating the various models.

摘要

阿什比和李(1991年)对源自一般识别理论(GRT;阿什比和佩林,1988年;阿什比和汤森德,1986年)的各种模型进行了测试,以检验它们预测相似性、分类和识别表现并将它们相互关联的能力。本评论(a)认为,与阿什比和李的观点相反,基于似然性的GRT通常无法在不纳入选择性注意的情况下从识别预测分类;(b)认为基于似然性的GRT中的分类规则在本质上与诺索夫斯基(1986年)基于范例的相似性模型极为相近;(c)报告了基于新模型的分析,这些分析对阿什比和李对其识别混淆数据的解释提出了质疑;(d)对阿什比和李测试的识别和相似性模型提出了疑问;(e)批评了阿什比和李拟合和评估各种模型的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验