Suppr超能文献

比较分类的决策边界模型和范例模型。

Comparing decision bound and exemplar models of categorization.

作者信息

Maddox W T, Ashby F G

机构信息

Department of Psychology, University of California, Santa Barbara 93106.

出版信息

Percept Psychophys. 1993 Jan;53(1):49-70. doi: 10.3758/bf03211715.

Abstract

The performance of a decision bound model of categorization (Ashby, 1992a; Ashby & Maddox, in press) is compared with the performance of two exemplar models. The first is the generalized context model (e.g., Nosofsky, 1986, 1992) and the second is a recently proposed deterministic exemplar model (Ashby & Maddox, in press), which contains the generalized context model as a special case. When the exemplars from each category were normally distributed and the optimal decision bound was linear, the deterministic exemplar model and the decision bound model provided roughly equivalent accounts of the data. When the optimal decision bound was non-linear, the decision bound model provided a more accurate account of the data than did either exemplar model. When applied to categorization data collected by Nosofsky (1986, 1989), in which the category exemplars are not normally distributed, the decision bound model provided excellent accounts of the data, in many cases significantly outperforming the exemplar models. The decision bound model was found to be especially successful when (1) single subject analyses were performed, (2) each subject was given relatively extensive training, and (3) the subject's performance was characterized by complex suboptimalities. These results support the hypothesis that the decision bound is of fundamental importance in predicting asymptotic categorization performance and that the decision bound models provide a viable alternative to the currently popular exemplar models of categorization.

摘要

将分类决策边界模型(阿什比,1992a;阿什比和马多克斯,即将出版)的性能与两个样例模型的性能进行了比较。第一个是广义上下文模型(例如,诺索夫斯基,1986年,1992年),第二个是最近提出的确定性样例模型(阿什比和马多克斯,即将出版),它将广义上下文模型作为一个特例包含在内。当每个类别的样例呈正态分布且最优决策边界为线性时,确定性样例模型和决策边界模型对数据的解释大致相当。当最优决策边界为非线性时,决策边界模型对数据的解释比任何一个样例模型都更准确。当应用于诺索夫斯基(1986年,1989年)收集的分类数据时,其中类别样例不是正态分布的,决策边界模型对数据的解释非常出色,在许多情况下显著优于样例模型。当(1)进行单主体分析,(2)每个主体接受相对广泛的训练,以及(3)主体的表现以复杂的次优性为特征时,决策边界模型被发现特别成功。这些结果支持了这样一种假设,即决策边界在预测渐近分类性能方面至关重要,并且决策边界模型为当前流行的分类样例模型提供了一种可行的替代方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验