Zhang Chunfen, Burton Zachary F
Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI 48824-1319, USA.
J Mol Biol. 2004 Sep 24;342(4):1085-99. doi: 10.1016/j.jmb.2004.07.070.
The mechanism for elongation catalyzed by human RNA polymerase II (RNAP II) has been analyzed using millisecond phase transient state kinetics. Here, we apply a running start, two-bond, double-quench protocol. Quenching the reaction with EDTA indicates NTP loading into the active site followed by rapid isomerization. HCl quenching defines the time of phosphodiester bond formation. Model-independent and global kinetic analyses were applied to simulate the RNAP II mechanism for forward elongation through the synthesis of two specific phosphodiester bonds, modeling rate data collected over a wide range of nucleoside triphosphate concentrations. We report adequate two-bond kinetic simulations for the reaction in the presence of TFIIF alone and in the presence of TFIIF+TFIIS, providing detailed insight into the RNAP II mechanism and into processive RNA synthesis. RNAP II extends an RNA chain through a substrate induced-fit mechanism, termed NTP-driven translocation. After rapid isomerization, chemistry is delayed. At a stall point induced by withholding the next templated NTP, RNAP II fractionates into at least two active and one paused conformation, revealed as different forward rates of elongation. In the presence of TFIIF alone or in the presence of TFIIF+TFIIS, rapid rates are very similar; although, with TFIIF alone the complex is more highly poised for forward synthesis. Based on steady-state analysis, TFIIF was thought to suppress transcriptional pausing, but this view is misleading. TFIIF supports elongation and suppresses pausing by stabilizing the post-translocated elongation complex. When TFIIS is present, RNA cleavage and transcriptional restart pathways are supported, but TFIIS has a role in suppression of transient pausing, which is the most important contribution of TFIIS to elongation from a stall position.
利用毫秒级瞬态动力学分析了人RNA聚合酶II(RNAP II)催化的延伸机制。在此,我们应用了一种连续启动、双键、双淬灭方案。用EDTA淬灭反应表明NTP加载到活性位点,随后快速异构化。HCl淬灭确定了磷酸二酯键形成的时间。应用独立于模型的全局动力学分析来模拟RNAP II通过合成两个特定磷酸二酯键进行正向延伸的机制,对在广泛的核苷三磷酸浓度范围内收集的速率数据进行建模。我们报告了在单独存在TFIIF以及存在TFIIF+TFIIS的情况下该反应的充分的双键动力学模拟,为RNAP II机制和连续RNA合成提供了详细的见解。RNAP II通过一种底物诱导契合机制延伸RNA链,称为NTP驱动的转位。快速异构化后,化学反应延迟。在因扣留下一个模板化NTP而诱导的停滞点,RNAP II至少分成两种活性构象和一种暂停构象,表现为不同的正向延伸速率。在单独存在TFIIF或存在TFIIF+TFIIS的情况下,快速速率非常相似;尽管单独存在TFIIF时,复合物更易于进行正向合成。基于稳态分析,TFIIF被认为可抑制转录暂停,但这种观点具有误导性。TFIIF通过稳定转位后的延伸复合物来支持延伸并抑制暂停。当存在TFIIS时,支持RNA切割和转录重新启动途径,但TFIIS在抑制瞬时暂停方面发挥作用,这是TFIIS对从停滞位置延伸的最重要贡献。