Pearson Tim, Frenguelli Bruno G
Neurosciences Institute, Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.
Eur J Neurosci. 2004 Sep;20(6):1555-65. doi: 10.1111/j.1460-9568.2004.03602.x.
The depression of excitatory synaptic transmission by hypoxia in area CA1 of the hippocampus is largely dependent upon the activation of adenosine A(1) receptors on presynaptic glutamatergic terminals. As well as adenosine, norepinephrine levels increase in the hypoxic/ischemic hippocampus. We sought to determine the influence of alpha- and beta-adrenoceptor (AR) activation on the hypoxic depression of synaptic transmission utilizing electrophysiological, pharmacological and adenosine sensor techniques. Norepinephrine depressed synaptic transmission and significantly accelerated the hypoxic depression of synaptic transmission. The alpha-AR agonist 6-fluoronorepinephrine mimicked both of these effects whilst the alpha(2)-AR antagonist yohimbine, but not the alpha(1)-AR antagonist urapidil, prevented the actions of 6-fluoronorepinephrine. In contrast, the beta-AR agonist isoproterenol enhanced synaptic transmission and only accelerated the hypoxic depression of transmission in hypoxia-conditioned slices in which the hypoxic release of adenosine is reduced. The effects of isoproterenol were blocked by the non-selective beta-AR antagonist propranolol and the selective beta(1)-AR antagonist betaxolol. Using an enzyme-based adenosine sensor we observed that the application of the beta-AR agonist resulted in increased extracellular adenosine during repeated hypoxia. Our results suggest that alpha(2)-AR activation facilitates the hypoxic depression of synaptic transmission probably via the known alpha(2)-AR-mediated inhibition of presynaptic calcium channels whereas beta(1)-AR activation does so via increased extracellular adenosine and greater activation of inhibitory adenosine A(1) receptors.
海马体CA1区缺氧对兴奋性突触传递的抑制在很大程度上依赖于突触前谷氨酸能终末上腺苷A(1)受体的激活。除了腺苷,缺氧/缺血海马体中的去甲肾上腺素水平也会升高。我们试图利用电生理、药理学和腺苷传感器技术来确定α-和β-肾上腺素能受体(AR)激活对突触传递缺氧抑制的影响。去甲肾上腺素抑制突触传递,并显著加速突触传递的缺氧抑制。α-AR激动剂6-氟去甲肾上腺素模拟了这两种作用,而α(2)-AR拮抗剂育亨宾,而非α(1)-AR拮抗剂乌拉地尔,可阻止6-氟去甲肾上腺素的作用。相反,β-AR激动剂异丙肾上腺素增强突触传递,且仅在腺苷缺氧释放减少的缺氧预处理切片中加速传递的缺氧抑制。异丙肾上腺素的作用被非选择性β-AR拮抗剂普萘洛尔和选择性β(1)-AR拮抗剂倍他洛尔阻断。使用基于酶的腺苷传感器,我们观察到在反复缺氧期间应用β-AR激动剂会导致细胞外腺苷增加。我们的结果表明,α(2)-AR激活可能通过已知的α(2)-AR介导的突触前钙通道抑制促进突触传递的缺氧抑制,而β(1)-AR激活则通过增加细胞外腺苷和更大程度地激活抑制性腺苷A(1)受体来实现。