Suppr超能文献

新纹状体中棘状神经元和快速发放神经元诱发的诱导多能干细胞的比较。

Comparison of IPSCs evoked by spiny and fast-spiking neurons in the neostriatum.

作者信息

Koos Tibor, Tepper James M, Wilson Charles J

机构信息

Section of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.

出版信息

J Neurosci. 2004 Sep 8;24(36):7916-22. doi: 10.1523/JNEUROSCI.2163-04.2004.

Abstract

Most neurons in the neostriatum are GABAergic spiny projection neurons with extensive local axon collaterals innervating principally other spiny projection neurons. The other source of GABAergic inputs to spiny neurons derives from a small number of interneurons, of which the best characterized are the parvalbumin-containing, fast-spiking interneurons. Spiny neuron collateral inhibition was not demonstrated until recently, because the IPSPs recorded at the soma are surprisingly small. In contrast, interneuronal inhibition was readily detected, comprising much larger IPSPs. Here, we report the application of quantal analysis and compartmental modeling to compare and contrast IPSCs in spiny neurons originating from axon collaterals and interneurons. The results indicate that individual release sites at spiny and interneuron synapses have similar quantal sizes and baseline release probabilities. Interneuronal unitary IPSCs are several times larger because of their proximal location on the neuron and because they have a larger number of transmitter release sites. Despite the small amount of current they can deliver to the soma, spiny cell collateral synapses had moderately high baseline release probabilities (0.5-0.9), suggesting that they are not weak because of some form of depression or modulation. The size of unitary collateral synaptic currents increased monotonically during development. These results argue against models of competitive inhibition in neostriatum, including those in which competitive inhibition is transiently effective during development and learning, and suggest a different role for the spiny cell axon collaterals.

摘要

新纹状体中的大多数神经元是γ-氨基丁酸(GABA)能棘状投射神经元,其广泛的局部轴突侧支主要支配其他棘状投射神经元。GABA能输入到棘状神经元的另一个来源是少数中间神经元,其中特征最明显的是含小白蛋白的快速发放中间神经元。直到最近才证实棘状神经元侧支抑制,因为在胞体记录到的抑制性突触后电位(IPSPs)出奇地小。相比之下,中间神经元抑制很容易检测到,其IPSPs要大得多。在这里,我们报告了应用量子分析和房室模型来比较和对比源自轴突侧支和中间神经元的棘状神经元中的抑制性突触后电流(IPSCs)。结果表明,棘状神经元和中间神经元突触处的单个释放位点具有相似的量子大小和基线释放概率。中间神经元的单位IPSCs要大几倍,这是因为它们在神经元上的位置更靠近近端,并且它们有更多的递质释放位点。尽管它们能传递到胞体的电流量很小,但棘状细胞侧支突触具有中等较高的基线释放概率(0.5 - 0.9),这表明它们并非因某种形式的抑制或调制而微弱。单位侧支突触电流的大小在发育过程中单调增加。这些结果与新纹状体中的竞争性抑制模型相悖,包括那些认为竞争性抑制在发育和学习过程中短暂有效的模型,并提示棘状细胞轴突侧支具有不同的作用。

相似文献

1
Comparison of IPSCs evoked by spiny and fast-spiking neurons in the neostriatum.
J Neurosci. 2004 Sep 8;24(36):7916-22. doi: 10.1523/JNEUROSCI.2163-04.2004.
2
Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons.
Brain Res Rev. 2008 Aug;58(2):272-81. doi: 10.1016/j.brainresrev.2007.10.008. Epub 2007 Nov 1.
3
Synaptic input and output of parvalbumin-immunoreactive neurons in the neostriatum of the rat.
Neuroscience. 1994 Oct;62(3):707-19. doi: 10.1016/0306-4522(94)90471-5.
5
GABAergic microcircuits in the neostriatum.
Trends Neurosci. 2004 Nov;27(11):662-9. doi: 10.1016/j.tins.2004.08.007.
6
GABAergic inhibition in the neostriatum.
Prog Brain Res. 2007;160:91-110. doi: 10.1016/S0079-6123(06)60006-X.
7
Identification and Characterization of a Novel Spontaneously Active Bursty GABAergic Interneuron in the Mouse Striatum.
J Neurosci. 2018 Jun 20;38(25):5688-5699. doi: 10.1523/JNEUROSCI.3354-17.2018. Epub 2018 May 22.
8
Surround inhibition among projection neurons is weak or nonexistent in the rat neostriatum.
J Neurophysiol. 1994 Nov;72(5):2555-8. doi: 10.1152/jn.1994.72.5.2555.
9
Inhibitory control of neostriatal projection neurons by GABAergic interneurons.
Nat Neurosci. 1999 May;2(5):467-72. doi: 10.1038/8138.

引用本文的文献

1
loss drives striatal neuron hyperexcitability and behavioral inflexibility.
bioRxiv. 2025 Mar 13:2024.05.09.593387. doi: 10.1101/2024.05.09.593387.
2
Anti-Hebbian plasticity drives sequence learning in striatum.
Commun Biol. 2024 May 9;7(1):555. doi: 10.1038/s42003-024-06203-8.
3
Comparison of unitary synaptic currents generated by indirect and direct pathway neurons of the mouse striatum.
J Neurophysiol. 2024 May 1;131(5):914-936. doi: 10.1152/jn.00066.2024. Epub 2024 Apr 10.
6
A Selective Projection from the Subthalamic Nucleus to Parvalbumin-Expressing Interneurons of the Striatum.
eNeuro. 2023 Jul 5;10(7). doi: 10.1523/ENEURO.0417-21.2023. Print 2023 Jul.
7
Cortical control of striatal fast-spiking interneuron synchrony.
J Physiol. 2022 May;600(9):2189-2202. doi: 10.1113/JP282850. Epub 2022 Apr 11.
8
Bayesian Mapping of the Striatal Microcircuit Reveals Robust Asymmetries in the Probabilities and Distances of Connections.
J Neurosci. 2022 Feb 23;42(8):1417-1435. doi: 10.1523/JNEUROSCI.1487-21.2021. Epub 2021 Dec 10.
9
The Effect of Serotonin Receptor 5-HT1B on Lateral Inhibition between Spiny Projection Neurons in the Mouse Striatum.
J Neurosci. 2021 Sep 15;41(37):7831-7847. doi: 10.1523/JNEUROSCI.1037-20.2021. Epub 2021 Aug 4.
10
μ-Opioid Receptor (Oprm1) Copy Number Influences Nucleus Accumbens Microcircuitry and Reciprocal Social Behaviors.
J Neurosci. 2021 Sep 22;41(38):7965-7977. doi: 10.1523/JNEUROSCI.2440-20.2021. Epub 2021 Jul 22.

本文引用的文献

1
Action potential timing determines dendritic calcium during striatal up-states.
J Neurosci. 2004 Jan 28;24(4):877-85. doi: 10.1523/JNEUROSCI.4475-03.2004.
3
Direct physiological evidence for synaptic connectivity between medium-sized spiny neurons in rat nucleus accumbens in situ.
J Neurophysiol. 2004 Mar;91(3):1111-21. doi: 10.1152/jn.00892.2003. Epub 2003 Oct 29.
4
Dopaminergic modulation of axon collaterals interconnecting spiny neurons of the rat striatum.
J Neurosci. 2003 Oct 1;23(26):8931-40. doi: 10.1523/JNEUROSCI.23-26-08931.2003.
5
Spontaneous voltage oscillations in striatal projection neurons in a rat corticostriatal slice.
J Physiol. 2003 Nov 15;553(Pt 1):169-82. doi: 10.1113/jphysiol.2003.050799. Epub 2003 Sep 8.
6
When inhibition goes incognito: feedback interaction between spiny projection neurons in striatal function.
Trends Neurosci. 2003 Aug;26(8):436-43. doi: 10.1016/S0166-2236(03)00196-6.
7
Fast synaptic transmission between striatal spiny projection neurons.
Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15764-9. doi: 10.1073/pnas.242428599. Epub 2002 Nov 18.
8
Inhibitory interactions between spiny projection neurons in the rat striatum.
J Neurophysiol. 2002 Sep;88(3):1263-9. doi: 10.1152/jn.2002.88.3.1263.
9
Dendritic calcium encodes striatal neuron output during up-states.
J Neurosci. 2002 Mar 1;22(5):1499-512. doi: 10.1523/JNEUROSCI.22-05-01499.2002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验