Manni Franz, Guérard Etienne, Heyer Evelyne
Départment Hommes, Natures, Sociétés, Human Population Genetics Group, CNRS UMR 5145, Musée de l'Homme, 17 Place du Trocadéro, Paris, France.
Hum Biol. 2004 Apr;76(2):173-90. doi: 10.1353/hub.2004.0034.
When sampling locations are known, the association between genetic and geographic distances can be tested by spatial autocorrelation or regression methods. These tests give some clues to the possible shape of the genetic landscape. Nevertheless, correlation analyses fail when attempting to identify where genetic barriers exist, namely, the areas where a given variable shows an abrupt rate of change. To this end, a computational geometry approach is more suitable because it provides the locations and the directions of barriers and because it can show where geographic patterns of two or more variables are similar. In this frame we have implemented Monmonier's (1973) maximum difference algorithm in a new software package to identify genetic barriers. To provide a more realistic representation of the barriers in a genetic landscape, we implemented in the software a significance test by means of bootstrap matrices analysis. As a result, the noise associated with genetic markers can be visualized on a geographic map and the areas where genetic barriers are more robust can be identified. Moreover, this multiple matrices approach can visualize the patterns of variation associated with different markers in the same overall picture. This improved Monmonier's method is highly reliable and can be applied to nongenetic data whenever sampling locations and a distance matrix between corresponding data are available.
当采样地点已知时,可以通过空间自相关或回归方法来检验遗传距离与地理距离之间的关联。这些检验为遗传格局的可能形状提供了一些线索。然而,在试图确定遗传屏障存在的位置(即给定变量显示出突变率的区域)时,相关性分析会失效。为此,计算几何方法更为合适,因为它能提供屏障的位置和方向,还能显示两个或多个变量的地理模式在何处相似。在此框架下,我们在一个新的软件包中实现了蒙莫尼尔(1973年)的最大差异算法,以识别遗传屏障。为了在遗传格局中更真实地呈现屏障,我们在软件中通过自展矩阵分析实现了显著性检验。结果,与遗传标记相关的噪声可以在地理图上可视化,并且可以识别出遗传屏障更强健的区域。此外,这种多矩阵方法可以在同一整体图中可视化与不同标记相关的变异模式。这种改进后的蒙莫尼尔方法高度可靠,只要有采样地点和相应数据之间的距离矩阵,就可以应用于非遗传数据。